Analysis of the horizontal structure of a measurement and control geodetic network based on entropy

Open access

Abstract

The paper attempts to determine an optimum structure of a directional measurement and control network intended for investigating horizontal displacements. For this purpose it uses the notion of entropy as a logarithmical measure of probability of the state of a particular observation system. An optimum number of observations results from the difference of the entropy of the vector of parameters ΔH(x)corresponding to one extra observation. An increment of entropy interpreted as an increment of the amount of information about the state of the system determines the adoption or rejection of another extra observation to be carried out.

Bilgi, S., Ipbuker, Ucer D. & Muhammed S. (2008). Map entropy analysis of topographic data used in disaster information systems. Journal of Earthquake Engineering, 12, Supplement 2, 23-36. DOI: 10.1080/13632460802013438.

Brillouin, L. (1969). La science et la théorie de l’information. Polish edition: Nauka a teoria informacji. Warszawa: PWN.

Gil, J. (1997). Analysis of horizontal geodetic network on the entrophy basis (in Polish). In III Scientific - Technical Conference on Problems of Automation in Engineering Surveying, 20-21 March 1997 (pp. 93-107). Warsaw, Poland: Polish Academy of Sciences.

Gil, J. (1999). The problem of the enthropy o fan observation system in the research of displacement. The 9th FIG International Symposium on Deformation Measurements, 27-30 September 1999 (pp. 256-266) Olsztyn, Poland: Warmia and Mazury University.

Lehmann, R. & Scheffler T. (2011). Monte Carlo-based data snooping with application to a geodetic network. Journal of Applied Geodesy, 5(3-4), 123-134. DOI: 10.1515/JAG.2011.014.

Neuman, J. (1965). K analizu geodeziczeskich postrojenii. Izwestia wuzow. Moscow, Rusia: MIIZ.

Nowak, E. & Prószyński W. (1990). Analysis of horizontal engineering survey networks theory andworked examples (in Polish). User Guide SYPO. Warsaw, Poland: SYPO.

Nowak, E. (1993). RMS Technique. Geometrical and technical factors (in Polish). In III Scientific - Technical Conference on Problems of Automation in Engineering Surveying, 20-21 March 1997 (pp. 177-190). Warsaw, Poland: Polish Academy of Sciences.

Peng, J., Guo Ch., Hang H. & Shong S. (2006). An aggregate constrain method for inequality - constrained lest squares problems. Journal of Geodesy, 79, 705-713. DOI: 10.1007/s00190-006-0026-z.

Philips, S.J., Anderson R.P. & Schapire R.E. (2006). Maximum entropy modeling of species geographic distribution. Ecological Modelling, 190 (2006), 231-259.

Schaffrin, B. & Cothren J. (2004). Hierarchical data fusion with photoframmetric applications. RevistaBrasileira de Cartografia, 55/02, 25-34.

Shannon, C.E. & Weaver W. (1949). The mathematical theory of communication, Urbana: University of Illinois Press.

Sharif, S., Yusoff N.S. & Djauharin M.A. (2012). Network Topology of Foreign Exchange Rate. ModernApplied Science, 6(11), 35-43. DOI:10.5539/mas.v6n11p35.

Wang, H. (2010). An hierarchical information entropy model coverage estimation of coastal areas based on an adaptive Discrete Global Grid System. In Geoinformatics, 2010 18th International Conference, 18-20 June 2010 (pp.1-5). Beijing, China: IEEE Geoscience and Remote Sensing Society. DOI:10.109/GEOINFORMATICS.2010.5567822.

Wu, H., Zhu H. & Liu Y. (2004). A raster-based map information mearurment for QoS. InternationalArchives of Photogrammetry Remote Sensing and Spatial Information Sciences, 35(2), 365-370.

Geodesy and Cartography

The Journal of Committee on Geodesy of Polish Academy of Sciences

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 25 25 8
PDF Downloads 14 14 7