The foreland state at the onset of the flexurally induced transgression: data from provenance analysis at the peripheral Carpathian Foredeep (Czech Republic)

Open access

Abstract

The Žerotice Formation recognised in a confined area NE–SE of Znojmo represents a basal member of the sedimentary succession of the southwestern margin of the Carpathian Foredeep in Moravia (Czech Republic). Two facies associations were recognised within the formation. The first one mantles the pre-Neogene basement with an irregular unconformity, reflects arid climatic conditions and deposition of episodic shallow, high-energy stream flows and/or mass flows (alluvial to fluvial deposits). The second facies association is interpreted as lagoonal to distal flood plain deposits. The barren unfossiliferous deposits of the Žerotice Formation are covered by nearshore marine Eggenburgian deposits. The boundary between these deposits represents a sequence boundary (i.e. the basal forebulge unconformity). Detailed provenance studies of successive beds below and above this sequence boundary showed differences in the source area and paleodrainage. Both the local primary crystalline rocks (Moravian and Moldanubian Unit, Thaya Batholith) and older sedimentary cover (especially Permo–Carboniferous sedimentary rocks) form the source of the Žerotice Formation. All these geological units are located only a few km away from the preserved areal extent of the deposits of the Žerotice Formation (short transport and a local source). The source areas of the overlying marine Eggenburgian beds are located far more to the W and NW in the Moldanubian and Moravian Units (longer transport, extended source area). Local confined preservation of the Žerotice Formation is preliminarily explained as connected with a tectonically predisposed paleovalley.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Adámek J. 2003: The Miocene of the Carpathian Foredeep in southern Moravia geological development and lithostratigraphic classification. Zprávy o geologických výzkumech v r. 2002 9–11 (in Czech).

  • Adámek J. Brzobohatý R. Pálenský P. & Šikula J. 2003: The Karpatian in the Carpathian Foredeep (Moravia). In: Brzobohatý R. Cicha I. Kováč M. & Rögl F. (Eds.): The Karpatian a Lower Miocene Stage of the Central Paratethys. Masaryk University Brno 75–92.

  • Adams J.A.S. & Weaver E. 1958: Thorium to uranium ratios as indicators of sedimentary process: example of concept of geochemical facies. AAPG Bulletin 42 387–430.

  • Akinlotan O. 2017: Geochemical analysis for paleoenvironmental interpretations — a case study of the English Wealden (Lower Cretaceous south-east England). Geol. Quarterly 61 1 227–238.

  • Andreucci S. Panzeri L. Martini P. Maspero F. Martini M. & Pascucci V. 2014: Evolution and architecture of a West Mediterranean Upper Pleistocene to Holocene coastal Apron-fan system. Sedimentology 61 2 333–361.

  • Aubrecht R. Méres Š. Sýkora M. & Mikuš T. 2009: Provenance of the detrital garnets and spinels from the Albian sediments of the Czorsztyn Unit (Pieniny Klippen Belt Western Carpathians Slovakia). Geol. Carpath. 60 463–483.

  • Baker V.R. 1984: Flood sedimentation in bedrock fluvial systems. In: Koster E.H. & Steel R.J. (Eds.): Sedimentology of Gravels and Conglomerates. Canadian Society of Petroleum GeologistsMemoir 10 87–98.

  • Batík P. Čtyroký P. Gabriel M. Holásek O. Klečák J. Líbalová J. Mátl V. Matějovská O. Střída M. Šalanský K. Štych J. & Zeman A. 1983: Explanations to the geological map of ČSSR 1:25000. Znojmo 34-113. Ústřední ústav geologický Praha (in Czech).

  • Beaumont C. 1981: Foreland basins. Geoph. Journal of the Royal AstronomicalSociety 55 291–329.

  • Blair T.C. 1999: Cause of the dominance by sheetflood vs. debris-flow processes on two adjacent alluvial fans Death Valley California. Sedimentology 46 1015–1025.

  • Breda A. Mellere D. & Massari F. 2007: Facies and processes in a Gilbert-delta-filled incised valley (Pliocene of Ventimiglia NW Italy). Sediment. Geol. 200 31–55.

  • Bridge J.S. & Demicco R. 2008: Earth Surface Processes Landforms and Sediment Deposits. Cambridge University Press Cambridge 1–815.

  • Brzobohatý R. 2002: The Carpathian Foredeep. In: Geological history of the Czech Republic. Academia Praha 346–353 (in Czech).

  • Brzobohatý R. & Cicha I. 1993: The Carpathian Foredeep. In: Přichystal A. Obstová V. & Suk M. (Eds.): Geologie Moravy a Slezska. MZM a PřF MU Brno 123–128 (in Czech).

  • Buriánek D. Tomanová Petrová P. & Otava J. 2012: Where do the Miocene sediments of the Brno region come from? Acta Musei Moraviae Sci. Geology 97 1 153–156 (in Czech).

  • Collinson J. Mountney N. & Thompson D. 2006: Sedimentary Structures. Terra Publishing Harpenden Hertfordshire England. 1–292.

  • Crampton S.L. & Allen P.A. 1995: Recognition of forebulge unconformities associated with early stage foreland basin development: example from the north Alpine foreland basin. AAPG Bull. 79 1495–1514.

  • Čopjaková R. Sulovský P. & Otava J. 2002: Comparison of the chemistry of detritic pyrope-almandine garnets of the Luleč Conglomerates with the chemistry of granulite garnets from the Czech Massif. Geologické výzkumy na Moravě a ve Slezku v roce 2001 9 44–47 (in Czech).

  • Čtyroký P. 1982: Lower Miocene (Eggenburgian and Ottnangian) of sw. part of the Carpathian Foredeep in Moravia. Zem. Plyn Nafta 27 4 379–394 (in Czech).

  • Čtyroký P. 1991: Classification and correlation of the Eggenburgian and Ottnangian in the south part of the Carpathian Foredeep in South Moravia. Záp. Karpaty. sér. geol. 15 67–109 (in Czech).

  • Čtyroký P. 1993: The Tertiary on Bohemian Massif in South Moravia. Jahrb. Geol. Bundesanst. 136 4 707–713.

  • Dalrymple R.W. 2004: Incised valleys in time and space: an inroduction to the volume and examination of the controls on valley formation and filling. In: Dalrymple R.W. Lecke D.A. & Tillman R.W. (Eds.): Incised valleys in time and space. SEPM Spec. Publ. 85 5–12.

  • Dalrymple R.W. Boyd R. & Zaitlin B.A. (Eds.) 1994: Incised-valley systems: origin and sedimentary sequences. SEPM Spec. Publ. 51 391.

  • DeCelles P.G. & Giles K.A. 1996: Foreland basin systems. Basin Research 8 105–123.

  • Dietrich P. Ghienne F. Schuster M. Lajeunesse P. Nutz A. Deschamps R. Roquin C. & Duringer P. 2017: From outwash to coastal systems in the Portneuf–Forestvilledeltaic complex (Quebec North Shore): Anatomy of a forcedregressive deglacial sequence. Sedimentology 64 1044–1078.

  • Dlabač M. 1976: Neogene on the se. margin of the Bohemian–Moravian Highlands. Výzk. Práce. Ústř. Úst. geol. 13 7–21 (in Czech).

  • Doveton J.H. 1991: Lithofacies and geochemical facies profiles from nuclear wireline logs: new subsurface templates for sedimentary modelling. In: Franseen E.K. Watney W.L. Kendall C.J. & Ross W. (Eds.): Sedimentary modelling-computer simulations and methods for improved parameter definition. Kansas Geological Society Bulletin 233 101–110.

  • Doveton J.H. & Merriam D.F. 2004: Borehole petrophysical chemostratigraphy of Pennsylvanian black shales in the Kansas subsur-face. Chem. Geol. 206 249–258.

  • Fernández L.P. Agueda J.A. Colmenero J.R. Salvador C.I. & Barba P. 1988: A coal-bearing fan-delta complex in the Westphalian D of the Central Coal Basin Cantabrian Mountains northwestern Spain: imlications for the recognition of humid-type fan deltas. In: Nemec W. & Steel R.J. (Eds.): Fan Deltas: Sedimentology and Tectonic Settings. Blackie and Son 286–302.

  • Fielding C.R. 1985: Coal depositional models and the distinction between alluvial and delta plain environments. Sediment. Geol. 42 41–48.

  • Finger F. & Haunschmid B. 1988: Die mikroskopische Untersuchung der akzessorischen Zirkone als Methode zur Klärung der Intrusionsfolge in Granitgebieten — eine Studie im nordöstlichen oberösterreichischen Moldanubikum. Jahrb. Geol. Bundesanst. 131 2 255–266.

  • Flemings P.B. & Jordan T.E. 1989: A synthetic stratigraphic model of foreland basin development. J. Geophys. Res. 94 B4 3851–3866.

  • Folk R.L. & Ward W. 1957: Brazos River bar: a study in the sig nificance of grain-size parameters. J. Sediment. Petrol. 27 3–26.

  • Force E.R. 1980: The provenance of rutile. J. Sediment. Res. 50 2 485–488.

  • Ford M. Williams E.A. Malartre F. & Popescu S.M. 2007: Strati-graphic architecture sedimentology and structure of the Vouraikos Gilbert-type fan delta Gulf of Corinth Greece. In: Nichols G. Williams E. & Paola C. (Eds.): Sedimentary Processes Environments and Basins. A Tribute to Peter Friend. Int. Assoc. Sedimentol. Spec. Publ. 38 49–90.

  • Fralick P. & Zaniewski K. 2012: Sedimentology of a wet pre-vegetation floodplain assemblage. Sedimentology 59 1030–1049.

  • Francírek M. & Nehyba S. 2016: Evolution of the passive margin of the peripheral foreland basin: an example from the Lower Miocene Carpathian Foredeep (Czech Republic). Geol. Carpath. 67 1 39–66.

  • Gobo K. Ghinassi M. Nemec W. & Sjursen E. 2014: Development of an incised valley-fill at an evolving rift margin: Pleistocene eustasy and tectonics on the southern side of the Gulf of Corinth Grece. Sedimentology 61 1086–1119.

  • Głuszyʼnski A. & Aleksandrowski P. 2016: A deep palaeovalley in the floor of the Polish Carpathian Foredeep Basin near Pilzno and its control on Badenian (Middle Miocene) evaporite facies. Geol. Quarterly 60 2 493–516.

  • Gupta S. 1999: Controls on sedimentation in distal margin palaeovalleys in the Early Tertiary Alpine foreland basin south-eastern France. Sedimentology 46 357–384.

  • Hampton B.A. & Horton B.K. 2007: Sheetflow fluvial processes in a rapidly subsiding basin Altiplano plateau Bolivia. Sedimentology 54 1121–1148.

  • Henry D.J. & Guidotti C.V. 1985: Tourmaline as a petrogenetic indicator mineral: An example from the staurolite-grade metapelites of NW Maine. Am. Mineral. 70 1–15.

  • Hasselbo S.P. 1996: Stratigraphy Cenozoic of the Atlantic margin offshore New Jersey. In: Mountain G.S. Miller K.G. Blum P. Poag C.W. & Twichell D.C. (Eds.): Proceedings of the Ocean Drilling Program. Scientific Results 150 411–422.

  • Holcová K. Hrabovský J. Nehyba S. Hladilová Š. Doláková N. & Demény A. 2015: The Langhian (Middle Badenian) carbonate production event in the Moravian part of the Carpathian Foredeep (Central Paratethys): a multiproxy record. Facies 61 1.

  • Hoppe G. 1966: Zirkone aus Granuliten. Berichte der Deutschen Gesellschaft für Geologische WissenschaftenReihe B: Mineralogie und Lagerstättenforschung 11 1 47–81.

  • Hubert J.F. 1962: A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. J. Sediment. Res. 32 3 440–450.

  • Ielpi A. Fralick P. Ventrac D. Ghinassi M. Lebeaua L-E. Marco-nato A. Meeka R. & Rainbirdfet R.H. 2018: Fluvial floodplains prior to greening of the continents: Stratigraphic record geodynamic setting and modern analogues. Sediment. Geol. 372 140–172.

  • Jarosiñski M. Poprawa P. & Ziegler P.A. 2009: Cenozoic dynamic evolution of the Polish Platform. Geol. Quarterly 53 1 3–26.

  • Jorgensen P.J. & Fielding C.R. 1996: Facies architecture of alluvial floodbasin deposits: three-dimensional data from the Upper Triassic Callide coal measures of eastcentral Queensland Australia. Sedimentology 43 479–495.

  • Jucha S. 1985: New features of structure of the Carpathian Foredeep and basement of the Carpathians. Przegląd Geologiczny 33 333–344 (in Polish with English summary).

  • Karnkowski P. 1989: Deltaic deposits of the Carpathian foreland. Przegląd Geologiczny 37 28–32 (in Polish with English summary).

  • Karnkowski P.H. & Ozimkowski W. 2001: Structural evolution of the pre-Miocene basement in the Carpathian Foredeep (Kraków– Przemyśl region SE Poland). Przegląd Geologiczny 49 431–436 (in Polish with English summary).

  • Kempf O. & Pfiffner O.A. 2004: Early Tertiary evolution of the North Alpine Foreland Basin of the Swiss Alps and adjoining areas. Basin Res. 16 549–567.

  • Kopecká J. Holcová K. Nehyba S. Hladilová Š. Brzobohatý R. & Bitner M.A. 2018: The earliest Badenian Planostegina bloom deposit: reflection of an unusual environment in the westernmost Carpathian Foredeep (Czech Republic). Geol. Quarterly 62 1 18–37.

  • Koss J.E. Ethridge F.G. & Schumm S.A. 1994: An experimental study of the effect of base-level change on fluvial coastal and shelf systems. J. Sediment. Res. B64 90–98.

  • Krejčí O. Ambrozek V. Bubík M. Drábková J. Gilíková H. Kryštofová E. Otava J. Tomanová Petrová P. Švábenická L. Hubatka F. Nehyba S. & Kuda F. 2017: Definition of the Žerotice trough in the Znojmo Region and valuing its perspectives from ground-water resources point of view. Final report. Open File Report MS Archives CGS Prague 1–49 (in Czech).

  • Krystek I. 1981: Using of assemblages of heavy minerals in sedimentary complexes. Folia Univ. Purkyn. Brunn. Geologia 22 3 101–107 (in Czech).

  • Krystková L. & Krystek I. 1981: New data from hydrogeology dril holes in SW part of the Carpathian Foredeep in Moravia. Scripta Univ. Purkyn. Brunn. Geologia 11 2 73–80.

  • Krzywiec P. 1997: Large-scale tectono-sedimentary Middle Miocene history of the central and eastern Polish Carpathian Foredeep Basin — results of seismic data interpretation. Przegląd Geologiczny 45 1039–1053.

  • Krzywiec P. 2001: Contrasting tectonic and sedimentary history of the central and eastern parts of the Polish Carpathian Foredeep basin – results of seismic data interpretation. Mar. Petrol. Geol. 18 13–38.

  • Kuhlemann J. & Kempf O. 2002: Post-Eocene evolution of the North Alpine Foreland Basin and its response to Alpine tectonics. Sediment. Geol. 152 45–78.

  • Leichmann J. & Höck V. 2008: The Brno Batholit: an insight into the magmatic and metamorphic evolution of the Cadomian Bruno-vistulian Unit eastern margin of the Bohemian Massif. J. Geosci. 53 281–305.

  • Leszczyński S. & Nemec W. 2015: Dynamic stratigraphy of composite peripheral unconformity in a foredeep basin. Sedimentology 62 645–680.

  • Lewin J. & Ashworth P.J. 2014: The negative relief of large river floodplains. Earth-Sci. Rev. 129 1–23.

  • Lihou J.C. & Mange-Rajetzky M.A. 1996: Provenance of the Sardona Flysch eastern Swiss Alps: example of high-resolution heavy mineral analysis applied to an ultrastable assemblage. Sediment. Geol. 105 141–157.

  • Lottes A.L. & Ziegler A.M. 1994: World peat occurrence and the seasonality of climate and vegetation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 106 23–37.

  • Lowe D.R. 1982: Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents. J. Sediment. Petrol. 52 279–297.

  • Mader D. 1980: Weitergewachsene Zirkone im Bundsandstein der Westeifel. Der Aufschluss 31 163–170.

  • Mange M.A. & Morton A.C. 2007: Geochemistry of heavy minerals. In: Mange M.A. & Wright D.T. (Eds.): Heavy Minerals in Use. Developments in Sedimentology 58 345–391.

  • Marconato A. Almeida R.P. Turra B.B. & Fragoso-Cesar A.R.S. 2014: Pre-vegetation fluvial floodplains and channel-belts in the Late Neoproterozoic-Cambrian Santa Bárbara Group (Southern Brazil). Sediment. Geol. 300 49–61.

  • Meinhold G. Anders B. Kostopoulos D. & Reischmann T. 2008: Rutile chemistry and thermometry as provenance indicator: An example from Chios Island Greece. Sediment. Geol. 203 98–111.

  • Méres S. 2008: Garnets — important information resource about source area and parental rocks of the siliciclastic sedimentary rocks. In: Jurkovič L. (Ed.): Cambelove dni 2008 Geochémia — Základná a aplikovaná geoveda. UK Bratislava 37–43 (in Slovak).

  • Mertz K.A. & Hubert J.F. 1990: Cycles of sand-flat sandstone and playa-lacustrine mudstone in the Triassic-Jurassic Blomidon redbeds Fundy rift basin Nova Scotia: implications for tectonic and climatic implications. Can. J. Earth Sci. 27 442–451.

  • Morton A.C. 1984: Stability of detrital heavy minerals in Tertiary sandstones from the North Sea Basin. Clay Miner. 19 287–308.

  • Morton A.C. & Hallsworth C. 1994: Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. Sediment. Geol. 90 241–256.

  • Mulder T. & Alexander J. 2001: The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology 48 269–299.

  • Myers K.J. & Wignall P.B. 1987: Understanding Jurassic organic-rich mudrocks-new concepts using gamma-ray spectrometry and palaeoecology: examples from the Kimmeridge Clay of Dorset and the Jet Rock of Yorkshire. In: Legget J.K. & Zuffa G.G. (Eds.): Marine clastic sedimentology. Graham and Trotman London 172–189.

  • Nehyba S. 2000: The cyclicity of Lower Miocene deposits of the SW part of the Carpathian Foredeep as the depositional response to sediment supply and sea-level changes. Geol. Carpath. 51 1 7–17.

  • Nehyba S. & Opletal V. 2016: Depositional environment and provenance of the Gresten Formation (Dogger) on the southeastern slopes of the Bohemian Massif (Czech Republic subsurface data). Austrian J. Earth Sci. 109 2.

  • Nehyba S. & Opletal V. 2017: Sedimentological study of the Nikolčice Formation — evidence of the Middle Jurassic transgression onto the Bohemian Massif (subsurface data). Geol. Quarterly 61 1 138–155.

  • Nehyba S. & Roetzel R. 2010: Fluvial deposits of the St. Marein–Freischling Formation — insights into initial depositional processes on the distal external margin of the Alpine-Carpathian Foredeep in Lower Austria. Austrian J. Earth Sci. 103 2 50–80.

  • Nehyba S. & Roetzel R. 2015: Depositional environment and provenance analyses of the Zöbing Formation (Upper Carboni ferous–Lower Permian) Austria. Austrian J. Earth Sci. 108 2 245–276.

  • Nehyba S. & Šikula J. 2007: Depositional architecture sequence stratigraphy and geodynamic development of the Carpathian Fore-deep (Czech Republic). Geol. Carpath. 58 1 53–69.

  • Nehyba S. Roetzel R. & Adamová M. 1999: Tephrostratigraphy of the Neogene volcaniclastics (Moravia Lower Austria Poland). Geol. Carpath. 50 Spec. Iss. 126–128.

  • Nehyba S. Roetzel R. & Maštera L. 2012: Provenance analysis of the Permo-Carboniferous fluvial sandstones of the southern part of the Boskovice Basin and the Zöbing Area (Czech Republic Austria): implications for paleogeographical reconstructions of the post-Variscan collapse basins. Geol. Carpath. 63 365–382.

  • Nehyba S. Holcová K. Gedl P. & Doláková N. 2016: The Lower Badenian transgressive-regressive cycles — a case study from Oslavany (Carpathian Foredeep Czech Republic). Neues Jahrb. Geol. Paläontol. 279 2 209–238.

  • Nemec W. & Steel R.J. 1984: Alluvial and coastal conglomerates: their significant features and some comments on gravelly mass-flow deposits. In: Koster E.H. & Steel R.J. (Eds.): Sedimentology of Gravels and Conglomerates. Can. Soc. Petrol. Geol. Memoir 10 1–31.

  • Neužil J. Kužvart M. & Šeba P. 1980: Kaolinization of the rock of the Thaya Batholith. Sbor. geol. Věd řada LG 21 7–41 (in Czech)

  • Nichols G.J. & Fisher J.A. 2007: Processes facies and architecture of fluvial distributary system deposits. Sediment. Geol. 195 75–90.

  • Oszczypko N. & Ślączka A. 1985: An atempt to palinspastic reconstruction of Neogene basins of the Carpathian Foredeep. Annales Societatis Geologorum Poloniae 55 55–75.

  • Oszczypko N. & Tomaś A. 1976: Pre-Tortonian relief of the Carpathian Foreland between Kraków and Dębica and its effect on Miocene sedimentation. Rocznik Polskiego Towarzystwa Geologicznego. 46 525–548 (in Polish with English summary).

  • Oszczypko N. Krzywiec P. Popadyuk I. & Peryt T. 2006: Carpathian Foredeep Basin (Poland and Ukraine): its sedimentary struc tural and geodynamic evolution. AAPG Memoir 84 261–318.

  • Otava J. Sulovský P. & Čopjaková R. 2000: Provenance changes of the Drahany Culm greywackes: statistical evaluation. Geologické výzkumy na Moravě a ve Slezku v r. 1999 Brno 94–98 (in Czech).

  • Picha F. 1979: Ancient submarine canyons of Tethyan continental margins Czechoslovakia. AAPG Bulletin 63 67–86.

  • Picha F. Stráník Z. & Krejčí O. 2006: Geology and hydrocarbon resources of the Outer Western Carpathians and their foreland Czech Republic. AAPG Memoir 84 49–175.

  • Poldervaart A. 1950: Statistical studies of zircon as a criterion in granitization. Nature 165 574–575.

  • Połtowicz S. 1998: Middle-Badenian submarine erosion in Carpathian Foreland. Exploratory implications. Nafta-Gaz 54 209–215 (in Polish with English summary).

  • Postma G. 1984: Mass-flow conglomerates in a submarine canyon: abrioja fan delta Pliocene Southeast Spain. In: Koster E.H. & Steel R.J. (Eds.): Sedimentology of Gravels and Conglomerates Canadian Society of Petroleum Geologists Memoir 10 237–258.

  • Postma G. & Nemec W. 1990: Regressive and transgressive sequences in a raised Holocene gravelly beach southwestern Crete. Sedimentology 37 907–920.

  • Powers M.C. 1982: Comparison chart for estimating roundness and sphericity. AGI Data Sheet 18.

  • Prachař L. 1970: Final report about the results of the drill prospection in Miocene of the Carpathian Foredeep between Miroslav Znojmo and Hrušovany nad Jevišovkou. Open File Report ČGS-Geofond Praha (in Czech).

  • Pupin J.P. 1980: Zircon and Granite Petrology. Contrib. Mineral. Petrol. 73 207–220.

  • Pupin J.P. 1985: Magmatic zoning of hercynian granitoids in France based on zircon typology. Schweiz. Mineral. Petrograph. Mitt. 65 29–56.

  • Rider M. 1996: The Geological Interpretation of Wireline Logs. Whittles Caithness 1–175.

  • Roetzel R. 2002: Legende un kurtze erläuterung zur Geologische Karte von Niederösterreich 1:200000. In: Schnabel W. Kren-mayer H-G. Mandl G.W. Novotny A. Roetzel R. Scharbert S. &. Schnabel W. (Eds.): Geologie der Österreichischen Bundesländer. Geologische Bundesanstalt Wien 1–47.

  • Roetzel R. 2017: Bericht 2013–2016 über geologische Aufnahmen auf Blatt 21 Horn. Jahrbuch Geol. Bundesanst. 157 317–328.

  • Roetzel R. Fuchs G. Batík P. Čtyroký P. Havlíček P. (Eds.) 2004: Geologische Karte der Nationalparks Thayatal und Podyjí 1:25000. Geologische Bundesanstalt Wien.

  • Rohais S. Eschard R. & Guillocheau F. 2008: Depositional model and stratigraphic architecture of rift climax Gilbert-type fan deltas (Gulf of Corinth Greece). Sediment. Geol. 210 132–145.

  • Ruffell A. & Worden R. 2000: Palaeoclimate analysis using spectral gamma-ray data from the Aptian (Cre ta ceous) of southern England and southern France. Palaeogeogr. Palaeoclimatol. Palaeoecol. 155 265–283.

  • Schnyder J. Ruffell A. Deconinck J.-F. & Baudin F. 2006: Conjunctive use of spectral gamma-ray logs and clay mineralogy in defining late Jurassic–early Cretaceous palaeoclimate change (Dorset U.K.). Palaeogeogr. Palaeoclimatol. Palaeoecol. 229 303–320.

  • Schumm S.A. & Etheridge F.G. 1994: Origin evolution and morphology of fluvial valleys. In: Dalrymple R.W. Boyd R. & Zaitlin B.A. (Eds.): Incised Valley Systems. Origin and Sedimentary Sequences. Spec. Publ. Soc. Econ. Paleont. Miner. 51 11–27.

  • Schuster R. & Stüwe K. 2010: Die Geologie der Alpen im Zeitraffer. Mitteilungen des naturwissenschaftlichen Vereins für Steiermark 140 5–21.

  • Shanley K.W. & McCabe P.J. 1994: Perspectives on the sequence stratigraphy of continental strata. Am. Assoc. Petrol. Geol. Bull. 78 544–568.

  • Shpak P.F. Vishniakov I.B. Vul A.Y. & Ladyzhensky G.N. 1999: Geological structure peculiarities and oil and gas content of the Ukrainian Carpathian platform autochthon. Biuletyn Państwowego Instytutu Geologicznego 387 175–181.

  • Sinclair H.D. 1997: Tectonostratigraphic model for underfilled peripheral foreland basin: An Alpine perspective. Geol. Soc. Amer. Bull. 109 3 324–346.

  • Triebold S. Eynatten H. von Luvizotto G.L. & Zack T. 2007: Deducing source rock lithology from detrital rutile geochemistry: An example from the Erzgebirge Germany. Chem. Geol. 244 421–436.

  • Triebold S. von Eynatten H. & Zack T. 2012: A recipe for the use of rutile in sedimentary provenance analysis. Sediment. Geol. 282 268–275.

  • Tucker M. (Ed.) 1995: Techniques in Sedimentology. Blackwell Science Oxford 1–394.

  • Viseras C. Calvache M.L. Soria J.M. & Fernandez J. 2003: Differential features of alluvial fans controlled by tectonic or eustatic accommodation space. Examples from the Betic Cordillera Spain. Geomorphology 50 181–202.

  • von Eynatten H. & Gaupp R. 1999: Provenance of Cretaceous synorogenic sandstones in the Eastern Alps: constraints from framework petrography heavy mineral analysis and mineral chemistry. Sediment. Geol. 124 81–111.

  • Walker R.G. & James N.P. 1992: Facies Models: Response to Sea Level Changes. Geological Association of Canada St. John’s 1–317.

  • Waschbusch P.J. & Royden L.H. 1992: Spatial and temporal evolution of foredeep basins: lateral strength variations and inelastic yielding in continental lithoshere. Basin Res. 4 179–196.

  • Weissmann G.S. Hartley A.J. Nichols G.J. Scuderi L.A. Olsen M. Buehler H. & Banteah R.. 2010: Fluvial form in modern continental sedimentary basins: distributive fluvial systems. Geology 38 39–42.

  • Went D.J. 2005: Pre-vegetation alluvial fan facies and processes: an example from the Cambro–Ordovician Rozel Conglomerate Formation Jersey Channel Islands. Sedimentology 52 693–713.

  • Winter J. 1981: Exakte tephro-stratigraphische Korrelation mit morphologisch differenzierten Zironpopulationen (Grenzbe-reich Unter/Mitteldevon Eifel-Ardennen). Neues Jahrb. Geol. Paläontol. Abh. 162 1 97–136.

  • Zack T. von Eynatten H. & Kronz A. 2004a: Rutile geochemistry and its potential use in quantitative provenance studies. Sediment. Geol. 171 37–58.

  • Zack T. Moraes R. & Kronz A. 2004b: Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contrib. Mineral. Petrol. 148 471–488.

  • Zaitlin B.A. Dalrymple R.W. & Boyd R. 1994: The stratigraphic organization of incised-valley systems associated with relative sea-level change. In: Dalrymple R.W. Boyd R. & Zaitlin B.A. (Eds.): Incised Valley Systems. Origin and Sedimentary Sequences. Spec. Publ. Soc. Econ. Paleont. Miner. 51 45–60.

  • Zimmerle W. 1979: Accessory Zircon from Rhyolite Yellowstone National Park (Wyoming U.S.A.). Zeitschrift der Deutschen Geologischen Gesellschaft. 130 361–369.

  • Zingg T. 1935: Beitrag zur Schotteranalyse. Die Schotteranalyse und ihre Anwendung auf die Glattalschotter. Schweizerische Mineralogische und Petrographische Mitteilungen 15 39–140.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.699
5-year IMPACT FACTOR: 1.676

CiteScore 2018: 1.76

SCImago Journal Rank (SJR) 2018: 0.627
Source Normalized Impact per Paper (SNIP) 2018: 1.203

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 68 68 4
PDF Downloads 64 64 1