Geochronology and Sr–Nd–Hf isotope constraints on the petrogenesis of teschenites from the type-locality in the Outer Western Carpathians

Open access


The Teschenite Association Rocks (TAR) in the Outer Western Carpathian (OWC) flysch form a classic suite of alkaline intrusions where teschenite and picrite were first defined. They represent continental intraplate volcanism that produced a wide range of melano- to mesocratic rocks emplaced during the Early Cretaceous rifting within the southern margin of the European Plate. Geochemical modelling indicates that they may be a product of ~2–5 % partial melting of the metasomatised, asthenospheric mantle. The variations in REE (low / heavy REE content, LaN/YbN = 11–34) are consistent with deep melting of garnet peridotite. Initial ε(Nd)i = 5.0–6.3 and ε(Hf)i = 4.9–10.0 preclude the significant mature crust involvement. Instead, a linear array formed by the 143Nd/144Nd and 176Hf/177Hf isotopic ratios points to a genesis from the mixed, HIMU–OIB source with the more depleted, MORB-type component. Mantle metasomatism was most likely caused by the Variscan subduction–collision processes as indicated by the depleted mantle Nd model ages. The isotope and trace element ratios of the TAR resemble the European Asthenospheric Reservoir (EAR) — the common mantle end-member for the widespread Cenozoic volcanic rocks in Europe. This confirms a long-term existence of the EAR mantle component beneath the Central Europe, at least since the Early Cretaceous. In situ laser-ablation ICP-MS U–Pb dating of titanite indicates short duration of mafic alkaline magmatism in the OWC, lasting from 123.7 ± 2.1 to 117.9 ± 1.8 Ma. Emplacement of the TAR is correlated with the maximum lithospheric thinning that triggered adiabatic decompression and partial melting of the upwelling asthenospheric mantle. Magmatism ceased most likely due to transition to the dominantly compressive regime associated with the major stress field reorganization directly preceding the Carpathian– Alpine Orogeny.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Anczkiewicz A.A. & Anczkiewicz R. 2016: U–Pb zircon geochronology and anomalous Sr–Nd–Hf isotope systematics of late orogenic andesites: Pieniny Klippen Belt Western Carpathians South Poland. Chem. Geol. 427 1–16.

  • Best M.G. 1970: Kaersutite–peridotite inclusions and kindred megacrysts in basanitic lavas Grand Canyon Arizona. Contrib. Mineral.Petrol. 27 25–44.

  • Birkenmajer K. 1977: Jurassic and Cretaceous lithostratigraphic units of the Pieniny Klippen Belt Carpathians Poland. Studia Geol. Polon. 45 1–159.

  • Birkenmajer K. 1986: Stages of structural evolution of the Pieniny Klippen Belt Carpathians. Studia Geol. Polon. 88 7–32.

  • Bogaard P.J.F. & Wӧrner G. 2003: Petrogenesis of basanitic to tholeiitic volcanic rocks from the Miocene Vogelsberg Central Germany. J. Petrol. 44 569–602.

  • Bouvier A. Vervoort J.D. & Patchett P.J. 2008. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273 48–57.

  • Boynton W.V. 1984: Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson R. (Ed.): Developments in Geochemistry2. Elsevier Amsterdam 63–114.

  • Bradshaw T.K.K. Hawkesworth C.J.J. & Gallagher K. 1993: Basaltic volcanism in the Southern Basin and Range: no role for a mantle plume. Earth Planet. Sci. Lett. 116 45–62.

  • Cebriá J. & Wilson M. 1995: Cenozoic mafic magmatism in Western/Central Europe: a common European asthenospheric reservoir. Terra Nova Abstract Supplement 7 162.

  • Chauvel C. McDonough W. Guille G. Maury R. & Duncan R. 1997: Contrasting old and young volcanism in Rurutu Island Austral chain. Chem. Geol. 139 125–143.

  • Cherniak D.J. 2000: Rare earth element diffusion in apatite. Geochim. Cosmochim. Acta. 64 3871–3885.

  • Chew D.M. Petrus J.A. & Kamber B.S. 2014: U–Pb LA-ICPMS dating using accessory mineral standards with variable common Pb. Chem. Geol. 363 185–199.

  • Clague D.A. & Frey F.A. 1982: Petrology and trace element geo-chemistry of the Honolulu volcanics Oahu: implications for the oceanic mantle below Hawaii. J. Petrol. 23 447–504.

  • Dawson J.B. 1982: Upper-Mantle Amphiboles: A Review. Mineral. Mag. 45 35–46.

  • DePaolo D.J. 1981: Neodymium isotopes in the Colorado Front Range and crust–mantle evolution in the Proterozoic. Nature 291 193–196.

  • Dolníček Z. Kropáč K. Uher P. & Polách M. 2010a: Mineralogical and geochemical evidence for multi-stage origin of mineral veins hosted by teschenites at Tichá Outer Western Carpathians Czech Republic. Chem. Erde-Geochem. 70 267–282.

  • Dolníček Z. Urubek T. & Kropáč K. 2010b: Post-magmatic hydro-thermal mineralization associated with Cretaceous picrite (Outer Western Carpathians Czech Republic): interaction between host rock and externally derived fluid. Geol. Carpath. 61 327–339.

  • Dolníček Z. Kropáč K. Janíčková K. & Urubek T. 2012: Diagenetic source of fluids causing the hydrothermal alteration of teschenites in the Silesian Unit Outer Western Carpathians Czech Republic: petroleum-bearing vein mineralization from the Stříbrník site. Mar. Petrol. Geol. 37 27–40.

  • Dostal J. & Owen J.V. 1998: Cretaceous alkaline lamprophyres from northeastern Czech Republic: geochemistry and petrogenesis. Geol. Rundschau 87 67–77.

  • Downes H. 2001: Formation and modification of the shallow sub-continental lithospheric mantle: a review of geochemical evidence from ultramafic xenolith suites and tectonically emplaced ultramafic massifs of western and central Europe. J. Petrol. 42 233–250.

  • Ersoy E.Y. 2013: PETROMODELER (Petrological Modeler): a Microsoft Excel spreadsheet program for modelling melting mixing crystallization and assimilation processes in magmatic systems. Turk. J. Earth Sci. 22 115–125.

  • Furman T. & Graham D. 1999: Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province. Lithos 48 237–262.

  • Gill R. 2010: Igneous rocks and processes. a practical guide 1st ed. Wiley-Blackwell Chichester 1–428.

  • Grabowski J. Krzemiński L. Nescieruk P. Szydło A. Paszkowski M. Pécskay Z. & Wójtowicz A. 2003: Geochronology of teschenitic intrusions in the outer Western Carpathians of Poland — constraints from 40K/40Ar ages and biostratigraphy. Geol. Carpath. 54 385–393.

  • Green D.H. & O’Hara M.J. 1971: Composition of basaltic magmas as indicators of conditions of origin: application to oceanic volcanism [and discussion]. Philos. T. Royal Soc. A. 268 707–725.

  • Hanyu T. Tatsumi Y. Senda R. Miyazaki T. Chang Q. Hirahara Y. Takahashi T. Kawabata H. Suzuki K. Kimura J.I. & Nakai S. 2012: Geochemical characteristics and origin of the HIMU reservoir: a possible mantle plume source in the lower mantle. Geochem. Geophy. Geosys. 12 1–30.

  • Harangi S. 2001: Neogene magmatism in the Alpine-Pannonian Transition Zone — A model for melt generation in a complex geodynamic setting. Acta Vulcanol. 13 25–39.

  • Harangi S. Tonarini S. Vaselli O. & Manetti P. 2003: Geochemistry and petrogenesis of Early Cretaceous alkaline igneous rocks in Central Europe: implications for a long-lived EAR-type mantle component beneath Europe. Acta Geol. Hung. 46 77–94.

  • Hohenegger L. 1861: Die geognostischen Verhältnisse der Nordkarpathen in Schlesien und des angrenzenden Theilen von Mähren und Galicien als Erläuterung zu der geognostischen Karte der Nordkarpathen. Perthes Gotha 1–50.

  • Horváth F. 1993: Towards a mechanical model for the formation of the Pannonian basin. Tectonophysics 226 333–357.

  • Hovorka D. & Spišiak J. 1988: Mesozoic volcanism of the Western Carpathians. Veda Bratislava 1–263 (in Slovak).

  • Hovorka D. & Spišiak J. 1993: Mesozoic volcanic activity of the Western Carpathian Segment of the Tethyan Belt: diversities in space and time. Jahrb. Geol. Bundesanst. 136 769–782.

  • Hovorka D. Dostal J. & Spišiak J. 1999: Geochemistry of the Cretaceous alkali basaltic rocks of the central part of the Western Carpathians (Slovakia). Krystalinikum 25 37–48.

  • Ivan P. Hovorka D. & Méres Š. 1999: Riftogenic volcanism in the Western Carpathian geological history: a review. GeoLines 9 41–47.

  • Jacobsen S.B. & Wasserburg G.J. 1980: Sm-Nd isotopic evolution of chondrites. Earth Planet. Sci. Lett. 50 139–155.

  • Janoušek V. Farrow C.M. & Erban V. 2006: Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). J. Petrol. 47 1255–1259.

  • Janoušek V. Moyen J.-F. Martin H. Erban V. & Farrow C. 2016: Geochemical modelling of igneous processes — principles and recipes in R Language 1st ed. Springer Heidelberg New York Dordrecht London 1–346.

  • Jung S. & Hoernes S. 2000: The major- and trace-element and isotope (Sr Nd O) geochemistry of Cenozoic alkaline rift-type volcanic rocks from the Rhön area (central Germany): Petrology mantle source characteristics and implications for asthenosphere-litho-sphere interactions. J. Volcanol. Geotherm. Res. 99 27–53.

  • Jung S. Pfänder J.A. Brügmann G. & Stracke A. 2005: Sources of primitive alkaline volcanic rocks from the Central European Volcanic Province (Rhön Germany) inferred from Hf Os and Pb isotopes. Contrib. Mineral. Petrol.150 546–559.

  • Jung S. Pfänder J.A. Brauns M. & Maas R. 2011: Crustal contamination and mantle source characteristics in continental intra-plate volcanic rocks: Pb Hf and Os isotopes from central European volcanic province basalts. Geochim. Cosmochim. Acta. 75 2664–2683.

  • Kennedy A.K. Kamo S.L. Nasdala L. & Timms N.E. 2010: Grenville skarn titanite: potential reference material for SIMS U–Th–Pb analysis. Can. Mineral. 48 1423–1443.

  • Kostopoulos D.K. & James S.D. 1991: Parameterization of the melting regime of the shallow upper mantle and the effects of variable lithospheric stretching on mantle modal stratification and trace-element concentrations in magmas. J. Petrol. 33 665–691.

  • Kruglov S. 1989: Geodynamics of the Ukrainian Carpathians. Geol. Carpath. 40 101–123.

  • Książkiewicz M. 1960: Pre-orogenic sedimentation in the Carpathian geosyncline. Geol. Rundsch. 50 8–31.

  • Kudělásková J. 1987: Petrology and geochemistry of selected rock types teschenite association Outer Western Carpathians. Geol. Carpath. 38 545–573.

  • Larson R.L. 1991: Latest pulse of Earth: evidence for a mid-Cretaceous superplume. Geology 19 6 547–550.

  • Le Bas M.J.L. Maitre R.W.L. Streckeisen A. & Zanettin B. 1986: A chemical classification of volcanic rocks based on the Total Alkali-Silica Diagram. J. Petrol. 27 745–750.

  • LeMaitre R.W. Streckeisen A. Zanettin B. LeBas M.J. Bonin B. Bateman P. Bellieni G. Dudek A. Efremova S. Keller J. Lameyre J. Sabine P.A. Schmid R. Sorensen H. & Woolley A.R. 1989: Igneous rocks: a classification and glossary of terms. International Union of Geological Sciences subcommission on the systematics of igneous rocks 32–39.

  • Locock AJ. 2014: An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Computers & Geosciences 62 1–11.

  • Lucińska-Anczkiewicz A. Villa I.M. Anczkiewicz R. & Ślączka A. 2002: 40Ar /39Ar dating of alkaline lamprophyres from the Polish Western Carpathians. Geol. Carpath. 53 45–52.

  • Ludwig K.R. 2012: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Spec. Publ. 5 1–75.

  • Lugmair G.W. & Marti K. 1978: Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle. Earth Planet. Sci. Lett. 39 349–357.

  • Lustrino M. & Wilson M. 2007: The circum-Mediterranean anorogenic Cenozoic igneous province. Earth-Sci. Rev. 81 1–65.

  • Mahmood A. 1973: Petrology of the teschenitic rock series from the type area of Cieszyn (Teschen). Ann. Soc. Geol. Pol. XLIII 153–216.

  • Matýsek D. Jirásek J. Skupien P. & Thomson S.N. 2018: The Žermanice sill: new insights into the mineralogy petrology age and origin of the teschenite association rocks in the Western Carpathians Czech Republic. Int. J. Earth Sci. 107 7 2553–2574.

  • McDonough W.F. & Sun S.-S. 1995: The composition of the Earth. Chem. Geol. 120 223–253.

  • Miranda R. Valadares V. Terrinha P. Mata J. Azevedo M.D.R. Gaspar M. Kullberg J.C. & Ribeiro C. 2009: Age constraints on the Late Cretaceous alkaline magmatism on the West Iberian margin. Cretaceous Res. 30 575–586.

  • Narębski W. 1990: Early rift stage in the evolution of western part of the Carpathians: geochemical evidence from limburgite and teschenite rock series. Geol. Carpath. 41 521–528.

  • Nebel O. Arculus R.J. van Westrenen W. Woodhead J.D. Jenner F.E. Nebel-Jacobsen Y.J. Wille M. & Eggins S.M. 2013: Coupled Hf–Nd–Pb isotope co-variations of HIMU oceanic island basalts from Mangaia Cook-Austral Islands suggest an Archean source component in the mantle transition zone. Geochim. Cosmochim. Acta. 112 87–101.

  • Nemčok M. Marko F. Kováč M. & Fodor L. 1989: Neogene tectonics and paleostress changes in the Czechoslovakian part of the Vienna Basin. Jahrb. Geol. Bundesanst. 132 443–458.

  • Nemčok M. Nemčok J. Wojtaszek M. Ludhova L. Oszczypko N. Sercombe W.J. Cieszkowski M. Paul Z. Coward M.P. & Ślączka A. 2001: Reconstruction of Cretaceous rifts incorporated in the outer west Carpathian wedge by balancing. Mar. Petrol.Geol. 18 39–64.

  • Oszczypko N. 2006: Late Jurassic–Miocene evolution of the Outer Carpathian fold-and-thrust belt and its foredeep basin (Western Carpathians Poland). Geol. Quarterly 50 169–194.

  • Oszczypko N. Salata D. & Krobicki M. 2012: Early Cretaceous intra-plate volcanism in the Pieniny Klippen Belt — a case study of the Velykyi Kamenets/Vilkhivchyk (Ukraine) and Biała Woda (Poland) sections. Geol. Quarterly 56 629–648.

  • Paton C. Hellstrom J. Paul B. Woodhead J. & Hergt J. 2011: Iolite: Freeware for the visualisation and processing of mass spectro-metric data. J. Anal. Atom. Spectrom. 26 2508.

  • Pearce J.A. 1996: A user’s guide to basalt discrimination diagrams. Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration Geol. Assoc. CanadaShort Course Notes 12 79–113.

  • Pearce J.A. 2008: Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100 14–48.

  • Pedersen R.B. Dunning G.R. & Robins B. 1989: U–Pb ages of nepheline syenite pegmatites from the Seiland Magmatic Province N Norway In: Gayer R.A. (Ed.) The Caledonide Geology of Scandinavia. Springer Netherlands Dordrecht 3–8.

  • Piromallo C. Vincent A.P. Yuen D.A. & Morelli A. 2001: Dynamics of the transition zone under Europe inferred from wavelet cross-spectra of seismic tomography. Phys. Earth Planet. Inter. 125 125–139.

  • Rock N.M.S. 1982: The Late Cretaceous alkaline igneous province in the Iberian Peninsula and its tectonic significance. Lithos 15 111–131.

  • Rögl F. 1996: Stratigraphic correlation of Paratethys Oligocene and Miocene. Mitt. Gesell. Geol. Bergbaust. Österreich 41 65–73.

  • Rosenbusch H. 1887: Mikroskopische Physiographie der Mineralien und Gesteine. Vol. II. Massige Gesteine. 2nd ed. Schweizerbart Stuttgart 1–596.

  • Rossy M. Azambre B. & Albarède F. 1992: REE and Sr/Nd isotope geochemistry of the alkaline magmatism from the Cretaceous North Pyrenean Rift Zone (France-Spain). Chem. Geol. 97 33–46.

  • Russell W.A. Papanastassiou D.A. & Tombrello T.A. 1978: Ca isotope fractionation on the Earth and other solar system materials. Geochim. Cosmochim. Acta 42 1075–1090.

  • Salters V.J.M. & White W.M. 1998: Hf isotope constraints on mantle evolution. Chem. Geol. 145 447–460.

  • Sandulescu M. 1988: Cenozoic tectonic history of the Carpathians. In: Royden L.H. & Horvath F. (Ed.): The Pannonian Basin: A Study in Basin Evolution. AAPG Memoir 17–25.

  • Sato H. Tchoua F. & Kusakabe M. 1991: Olivine phenocrysts in some Cameroonian basalts — implications for primary magma composition. Mineral. Petrol. 44 253–269.

  • Scherer E. Münker C. & Mezger K. 2001: Calibration of the lute-tium–hafnium clock. Science 293 683–687.

  • Seghedi I. Downes H. Szakács A. Mason P.R.D. Thirlwall M.F. Emilian R. Pécskay Z. Márton E. & Panaiotu C. 2004a: Neo-gene–Quaternary magmatism and geodynamics in the Carpathian–Pannonian region: a synthesis. Lithos 72 117–146.

  • Seghedi I. Downes H. Vaselli O. Szakács A. Balogh K. & Pécskay Z. 2004b: Post-collisional Tertiary–Quaternary mafic alkalic magmatism in the Carpathian-Pannonian region: a review. Tectono-physics 393 43–62.

  • Simkin T. & Smith J.V. 1970: Minor-element distribution in olivine. J. Geol. 78 304–325.

  • Ślączka A. Oszczypko N. Malata E. & Cieszkowski M. 1999: An early history of the Outer Carpathian basin. Geol. Carpath. 50 170–172.

  • Słomka T. 1986: Statistical approach to study of flysch sedimentation – Kimmeridgian–Hauterivian Cieszyn beds Polish Outer Carpathians. Ann. Soc. Geol. Pol. 56 277–336.

  • Smulikowski K. 1929: Materials on knowledge of magmatic rocks from Teschen region in Silesia. Arch. Tow. Nauk. we Lwowie 1 1–122 (in Polish).

  • Smulikowski K. 1980: Remarks on teschenite magmatic province (in Polish). Ann. Soc. Geol. Pol. L-1 41–54.

  • Sperner B. Ratschbacher L. & Nemčok M. 2002: Interplay between subduction retreat and lateral extrusion: Tectonics of the Western Carpathians. Tectonics 21 1051.

  • Spišiak J. & Balogh K. 2002: Mesozoic alkali lamprophyres in Variscan granitoids of the Malé Karpaty and Nízké Tatry Mountains — geochronology and geochemistry. Geol. Carpath. 53 295–301.

  • Spišiak J. Plašienka D. Bučová J. Mikuš T. & Uher P. 2011: Petrology and palaeotectonic setting of Cretaceous alkaline basaltic volcanism in the Pieniny Klippen Belt (Western Carpathians Slovakia). Geol. Quarterly 55 27–48.

  • Stacey J.S. & Kramers J.D. 1975: Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 26 207–221.

  • Sun S.-S. & McDonough W.F. 1989: Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A.D. & Norry M.J. (Eds.): Magmatism in the Ocean Basins. Geol. Soc. London Spec. Pub. 42 313–345.

  • Švábenická L. Bubík M. Krejčí O. & Stráník Z. 1997: Stratigraphy of Cretaceous Sediments of the Magura Group of Nappes in Moravia (Czech Republic). Geol. Carpath. 48 179–191.

  • Szopa K. Włodyka R. & Chew D. 2014: LA-ICP-MS U–Pb apatite dating of Lower Cretaceous rocks from teschenite-picrite association in the Silesian Unit (southern Poland). Geol. Carpath. 65 273–284.

  • Tindle A.G. & Webb P.C. 1990: Formula Unit Calculations — with optional calculated Li2O. 2. Li2O and H2O calculations. European J. Mineral. 2 595–610.

  • Tschermak G. 1866: Felsarten von ungewöhnlicher Zusammensetzung in den Umgebung von Teschen und Neutitschein. Sitz.-Ber. Akad. Wiss. (Wien) 53 260–287.

  • Ulrych J. Pivec E. Žák K. Bendl J. & Bosák P. 1993: Alkaline and ultramafic carbonate lamprophyres in Central Bohemian carboniferous basins Czech Republic. Mineral. Petrol. 48 65–81.

  • Ulrych J. Dostal J. Adamovič J. Jelínek E. Špaček P. Hegner E. & Balogh K. 2011: Recurrent Cenozoic volcanic activity in the Bohemian Massif (Czech Republic). Lithos 123 133–144.

  • Vervoort J.D. Plank T. & Prytulak J. 2011: The Hf–Nd isotopic composition of marine sediments. Geochim. Cosmochim. Acta. 75 5903–5926.

  • Villa I.M. 1998: Isotopic closure. Terra Nova 10 42–47.

  • Villa I.M. De Bièvre P. Holden N.E. & Renne P.R. 2015: IUPAC–IUGS recommendation on the half life of 87Rb. Geochim. Cosmochim.Acta. 164 382–385.

  • Willbold M. & Stracke A. 2006: Trace element composition of mantle end-members: implications for recycling of oceanic and upper and lower continental crust. Geochem. Geophy. Geosys. 7 1–30.

  • Wilson M. & Bianchini G. 1999: Tertiary–Quaternary magmatism within the Mediterranean and surrounding regions. In: Durand B. Jolivet L. Horváth F. & Séranne M. (Eds.): Tertiary–Quaternary magmatism within the Mediterranean and surrounding regions. Geol. Soc. London Spec. Publ. 156 141–168.

  • Wilson M. & Downes H. 1991: Tertiary–Quaternary Extension-Related Alkaline Magmatism in Western and Central Europe. J. Petrol. 32 811–849.

  • Wilson M. & Downes H. 2006: Tertiary–Quaternary intra-plate magmatism in Europe and its relationship to mantle dynamics. In: Gee D.G. & Stephenson R.A. (Eds): European Lithosphere Dynamics. Geol. Soc. London Memoires 32 147–166.

  • Włodyka R. 2010: The evolution of mineral composition of the Cieszyn magma province rocks. Wydawnictwo Uni wersytetu Śląskiego Katowice 1–232 (in Polish).

  • Woodhead J.D. 1996: Extreme HIMU in an oceanic setting: the geo-chemistry of Mangaia Island (Polynesia) and temporal evolution of the Cook–Austral hotspot. J. Volcan. Geotherm. Res. 72 1–19.

  • Żytko K. Gucik S. Ryłko W. Oszczypko N. Zając R. Garlicka I. Nemčok J. Eliáš M. Menčík E. & Stráník Z. 1989: Map of the tectonic elements of the Western Outer Carpathians and their Foreland. In: Poprawa D. & Nemčok J. (Eds.): Geological Atlas of the Western Outer Carpathians and Their Foreland. Państwowy Instytut Geologiczny Warszawa.

Journal information
Impact Factor

IMPACT FACTOR 2018: 1.699
5-year IMPACT FACTOR: 1.676

CiteScore 2018: 1.76

SCImago Journal Rank (SJR) 2018: 0.627
Source Normalized Impact per Paper (SNIP) 2018: 1.203

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 100 100 4
PDF Downloads 88 88 4