Graptolite turnover and δ13Corg excursion in the upper Wenlock shales (Silurian) of the Holy Cross Mountains (Poland)

Open access

Abstract

The mid–late Homerian Age of the Silurian Period was a time of intense changes in biota, oceanic chemistry, and sea level and is known as the lundgreni extinction (for the graptolite extinctions), the Mulde bioevent (for the conodont turnover event) or the Homerian carbon isotope excursion (CIE) probably related to glacially influenced climate perturbation. New information on this interval from the deep water sedimentary and graptolite succession of the Kielce Region (Holy Cross Mountains, Poland) of the northern margin of the Małopolska Block is presented here based on analysis of the Prągowiec Ravine section. The lundgreninilssoni graptolite biozones interval have been recognized there. This interval is composed by dark shales with very rare benthic fauna, which indicate the deep open-marine (pelagic) paleoenvironment. Ten samples were taken for the δ13Corg analysis from the lundgreni (2 samples), parvus (2 samples), praedeubeli (2 samples), praedeubeli–deubeli (1 sample), ludensis (2 samples) and nilssoni (1 sample) biozones. According to the δ13Corg results, the first positive δ13Corg excursion of the Mulde Bioevent is well recognized. The δ13Corg values rise from −30.7 – −30.1 ‰ in the lundgreni Biozone to −29.3 – −28.7 ‰ in the parvus Biozone and fall below −30 ‰ in the praedeubeli–deubeli interval. The second positive δ13Corg peak of the Mulde Event was not recognized in the Prągowiec Ravine. Based on the numerical comparisons using Raup-Crick metric of co-occurrences of graptolite species, the upper Homerian was characterized by significant between-biozone turnover of these taxa at the given locality.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bełka Z. Valverde-Vaquero P. Dörr W. Ahrendt H. Wemmer K. Franke W. & Schäfer J. 2002: Accretion of first Gondwana- derived terranes at the margin of Baltica. In: Winchester J.A. Pharaoh T.C. & Verniers J. (Eds.): Palaeozoic amalgamation of Central Europe. Geol. Soc. London Spec. Publ. 201 19–36.

  • Bickert T. Pätzold J. Samtleben C. & Munnecke A. 1997: Paleoenvironmental changes in the Silurian indicated by stable isotopes in brachiopod shells from Gotland Sweden. Geochim. Cosmochim. Acta 61 2717–2730.

  • Blain J.A. Ray D.C. & Wheeley J.R. 2016: Carbon isotope (δ13Ccarb) and facies variability at the Wenlock–Ludlow boundary (Silurian) of the Midland Platform UK. Can. J. Earth Sci. 53 725–730.

  • Calner M. 2008: Silurian global events — at the tipping point of climate change. In: Elewa A.M.T. (Ed.): Mass extinctions. Springer Verlag Berlin 21–57.

  • Calner M. Ahlberg P. Axheimer N. & Gustavsson L. 2006a: The first record of Odontopleura ovata (Trilobita) from Scandinavia: Part of a middle Silurian intercontinental shelly benthos mass occur-rence. GFF 128 33–37.

  • Calner M. Kozłowska A. Masiak M. & Schmitz B. 2006b: A shoreline to deep basin correlation chart for the middle Silurian coupled extinctionstable isotopic event. GFF 128 79–84.

  • Calner M. Lehnert O. & Jeppsson L. 2012: New chemostratigraphic data through the Mulde Event interval (Silurian Wenlock) Gotland Sweden. GFF 134 65–67.

  • Cocks L.R.M. 2002: Key Lower Palaeozoic faunas from near the Trans-European Suture Zone. Winchester J.A. Pharaoh T.C. & Verniers J. (Eds.): Palaeozoic amalgamation of Central Europe. Geol. Soc. London Spec. Publ. 201 37–46.

  • Cooper R.A. Sadler P.M. Munnecke A. & Crampton J.S. 2014: Graptoloid evolutionary rates track Ordovician–Silurian global climate change. Geol. Mag. 151 349–364.

  • Corfield R.M. Siveter D.J. Cartlidge J.E. & McKerrow W.S. 1992: Carbon isotope excursion near the Wenlock–Ludlow (Silurian) boundary in the Anglo–Welsh area. Geology 20 371–374.

  • Cramer B.D. Kleffner M.A. & Saltzman M.R. 2006: The Late Wen-lock Mulde positive carbon isotope excursion in North America. GFF 128 85–90.

  • Cramer B.D. Brett C.E. Melchin M.J. Männik P. Kleffner M.A. McLaughlin P.I. Loydell D.K. Munnecke A. Jeppsson L. Corradini C. Brunton F.R. & Saltzman M.R. 2011: Revised correlation of Silurian Provincial Series of North America with global and regional chronostratigraphic units and δ13Ccarb chemostratigraphy. Lethaia 44 185–202.

  • Cramer B.D. Condon D.J. Söderlund U. Marshall C. Worton G.J. Thomas A.T. Calner M. Ray D.C. Perrier V. Boomer I. Patchett P.J. & Jeppsson L. 2012: U–Pb (zircon) age constraints on the timing and duration of Wenlock (Silurian) paleocommunity collapse and recovery during the ‘Big Crisis’. Bull. Geol. Soc. Am. 124 1841–1857.

  • Cramer B.D. Schmitz M.D. Huff W.D. & Bergström S.M. 2015: High-precision U–Pb zircon age constraints on the duration of rapid biogeochemical events during the Ludlow Epoch (Silurian Period). J. Geol. Soc. 172 157–160.

  • Crampton J.S. Cooper R.A. Sadler P.M. & Foote M. 2018: Greenhouse−icehouse transition in the Late Ordovician marks a step change in extinction regime in the marine plankton. Proceedings of the National Academy of Sciences 113 1498–1503.

  • Dadlez R. Kowalczewski Z. & Znosko J. 1994: Some key problems of the pre-Permian tectonics of Poland. Geol. Quarterly 38 169–190.

  • Fry C.R. Ray D.C. Wheeley J.R. Boomer I. Jarochowska E. & Loydell D.K. 2017: The Homerian carbon isotope excursion (Silurian) within graptolitic successions on the Midland Platform (Avalonia) UK: implications for regional and global comparisons and correlations. GFF 139 301–313.

  • Frýda J. & Frýdová B. 2014: First evidence for the Homerian (late Wenlock Silurian) positive carbon isotope excursion from peri-Gondwana: new data from the Barrandian (Perunica). Bulletin of Geosciences 89 617–634.

  • Frýda J. & Frýdová B. 2016: The Homerian (late Wenlock Silurian) carbon isotope excursion from Perunica: Does dolomite control the magnitude of the carbon isotope excursion? Can. J. Earth Sci. 53 695–701.

  • Hammer Ø. & Harper D.A.T. 2008: Paleontological data analysis. Wiley-Blackwell 1–369.

  • Jaeger H. 1991: Neue Standard-Graptolithenzonenfolge nach der “Grossen Krise” an der Wenlock/Ludlow-Grenze (Silur). Neues Jahrb. Geol. Paläontol. 182 303–354.

  • Jarochowska E. & Munnecke A. 2016: Late Wenlock carbon isotope excursions and associated conodont fauna in the Podlasie Depression eastern Poland: a not-so-big crisis? Geol. J. 51 683–703.

  • Jarochowska E. Munnecke A. & Kozłowski W. 2014: An unusual microbial–rostroconch assemblage from the Mulde Event (Homerian middle Silurian) in Podolia Western Ukraine. GFF 136 120–124.

  • Jarochowska E. Bremer O. Heidlas D. Pröpster S. Vandenbroucke T.R. & Munnecke A. 2016a: End-Wenlock terminal Mulde carbon isotope excursion in Gotland Sweden: integration of stratigraphy and taphonomy for correlations across restricted facies and specialized faunas. Palaeogeogr. Palaeoclimatol. Palaeoecol. 457 304–322.

  • Jarochowska E. Munnecke A. Frisch K. Ray D.C. & Castagner A. 2016b: Faunal and facies changes through the mid Homerian (late Wenlock Silurian) positive carbon isotope excursion in Podolia western Ukraine. Lethaia 49 170–198.

  • Jarochowska E. Ray D.C. Röstel P. Worton G. & Munnecke A. 2018: Harnessing stratigraphic bias at the section scale: conodont diversity in the Homerian (Silurian) of the Midland Platform England. Palaeontology 61 57–76.

  • Jeppsson L. Aldridge R. & Dorning K. 1995: Wenlock (Silurian) oceanic episodes and events. J. Geol. Soc. 152 487–498.

  • Kaljo D. Kiipli T. & Martma T. 1997: Carbon isotope event markers through the Wenlock–Pridoli sequence at Ohesaare (Estonia) and Priekule (Latvia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 132 211–223.

  • Kaljo D. Kiipli T. & Martma T. 1998: Correlation of carbon isotope events and environmental cyclicity in the East Baltic Silurian. In: Landing E. & Johnson M.E. (Eds.): Silurian Cycles — Lin kages of Dynamic Stratigraphy with Atmospheric Oceanic and Tectonic Changes. New York State Museum Bulletin 491 297–312.

  • Kaljo D. Grytsenko V. Martma T. & Mõtus M.A. 2007: Three global carbon isotope shifts in the Silurian of Podolia (Ukraine): strati-graphical implications. Estonian Journal of Earth Sciences 56 205–220.

  • Kiipli T. Radzevičius S. Kallaste T. Motuza V. Jeppsson L. & Wickström L.M. 2008: Wenlock bentonites in Lithuania and correlation with bentonites from sections in Estonia Sweden and Norway. GFF 130 203–210.

  • Koren’ T.N. 1987: Graptolite dynamics in Silurian and Devonian time. Bulletin of the Geological Society of Denmark 35 149–160.

  • Koren’ T.N. 1991: The C. lundgreni extinction event in Central Asia and its bearing on graptolite biochronology within the Home-rian. Proceedings of the Estonian Academy of Science Geology 40 74–78.

  • Koren’ T.N. 1992: New late Wenlock monograptids of the Alai Range. Paleontologicheskiy Zhumal 92 21–33 (in Russian).

  • Koren’ T.N. & Suyarkova A.A. 1994: Monograptus deubeli and praedeubeli (Wenlock Silurian) in the Asian part of the former SovietUnion. Alcheringa 18 85–101

  • Koren’ T.N. Lenz A.C. Loydell D.K. Melchin M.J. Stroch P. & Teller L. 1996: Generalized graptolite zonal sequence defining Silurian time intervals for global paleogeographic studies. Lethaia 29 59–60.

  • Kowalczewski Z. Jaworowski K. & Kuleta M. 1998: Klonów Beds (uppermost Silurian–? lowermost Devonian) and the problem of Caledonian deformations in the Holy Cross Mountains. Geol. Quarterly 42 341–378.

  • Kozłowska A. 2016: A new generic name Semigothograptus for Gothograptus? meganassa Rickards & Palmer 2002 from the Silurian post-lundgreni Biozone recovery phase and comparative morphology of retiolitids from the lowermost upper Homerian (upper Wenlock). Zootaxa 4208 534–546.

  • Kozłowska A. Lenz A. & Melchin M. 2009: Evolution of the retiolitid Neogothograptus (Graptolithina) and its new species from the upper Wenlock of Poland Baltica. Acta Palaeontologica Polonica54 423–434.

  • Kozłowska-Dawidziuk A. Lenz A.C. & Štorch P. 2001: Upper Wenlock and lower Ludlow (Silurian) post-extinction graptolites Všeradice section Barrandian area Czech Republic. J. Paleontol. 75 147–164.

  • Kozłowski W. 2003: Age sedimentary environment and palaeogeo-graphical position of the Upper Silurian oolitic beds in the Holy Cross Mountains (Central Poland). Acta Geologica Polonica 53 341–357.

  • Kozłowski W. 2008: Lithostratigraphy and regional significance of the Nowa Słupia Group (Upper Silurian) of the Łysogóry region (Holy Cross Mountains Central Poland). Acta Geologica Polonica 58 43–74.

  • Kozłowski W. & Munnecke A. 2010: Stable carbon isotope development and sea-level changes during the Late Ludlow (Silurian) of the Łysogóry region (Rzepin section Holy Cross Mountains Poland). Facies 56 615–633.

  • Kozłowski W. & Tomczykowa E. 1999: A new occurrence of benthic fauna in the Niewachlów Greywackes (Upper Silurian) from Zalesie near Łagów in the Holy Cross Mountains. Geol. Quarterly 43 129–136.

  • Kozłowski W. Domańska J. Nawrocki J. & Pecskay Z. 2004: The provenance of the Upper Silurian greywackes from the Holy Cross Mountains (Central Poland). Mineralogical Society of Poland Special Papers 24 251–254.

  • Kozłowski W. Domańska-Siuda J. & Nawrocki J. 2014: Geochemistry and petrology of the Upper Silurian greywackes from the Holy Cross Mountains (central Poland): implications for the Caledonian history of the southern part of the Trans-European Suture Zone (TESZ). Geol. Quarterly 58 311–336.

  • Kozłowski W. Szczepanik Z. Trela W. Zenkner L. & Żylińska A. 2017: Pre-Variscan evolution of the Holy Cross Mountains — Lower Palaeozoic to Middle Devonian. In: Żylińska A. (Ed.): 10th Baltic Stratigraphic Conference Chęciny 12–14 September 2017. Abstracts and Guide Book. Warszawa 108–136.

  • Lenz A.C. 1994: Extinction and opportunistic evolution among late Wenlock graptolites. Lethaia 27 111–117.

  • Lenz A.C. 1995: Upper Homerian (Wenlock Silurian) graptolites and graptolite biostratigraphy Arctic Archipelago Canada. Can. J. Earth Sci. 32 1378–1392.

  • Lenz A.C. & Kozłowska A. 2007: Retiolitid diversification and Silurian sea level changes. Acta Palaeontologica Sinica 46 (Suppl.) 269–277.

  • Lenz A.C. Noble P.J. Masiak M. Poulson S.R. & Kozłowska A. 2006: The lundgreni Extinction Event: integration of paleonto-logical and geochemical data from Arctic Canada. GFF 128 153–158.

  • Makhnach A.A. Kruchek S.A. Pokrovsky B.G. Strel’tsova G.D. Murashko O.V. & Petrov O.L. 2018: Carbon oxygen and sulfur isotope compositions and model of the Silurian rock formation in northwestern Belarus. Lithology and Mineral Resources 53 1–13.

  • Malec J. 2001: Sedimentology of deposits around the Late Caledonian unconformity in the western Holy Cross Mountains. Geol. Quarterly 45 397–415.

  • Maletz J. 2008: Retiolitid graptolites from the collection of Hermann Jaeger in the Museum for Naturkunde Berlin (Germany). I. Neogothograptus and Holoretiolites. Paläontologische Zeitschrift 82 285–307.

  • Maletz J. 2010: Retiolitid graptolites from the collection of Hermann Jaeger II: CometograptusSpinograptus and Plectograptus. Paläontologische Zeitschrift 84 501–522.

  • Marshall C. Thomas A.T. Boomer I. & Ray D.C. 2012: High resolution δ13C stratigraphy of the Homerian (Wenlock) of the English Midlands and Wenlock Edge. Bulletin of Geosciences 87 669–679.

  • Martma T. Brazauskas A. Kaljo D. Kaminskas D. & Musteikis P. 2005: The Wenlock–Ludlow carbon isotope trend in the Vidukle core Lithuania and its relations with oceanic events. Geol. Quarterly 49 223–234.

  • Masiak M. 2010: Stop 9. Bardo Prągowiec — Wenlock–Lower Ludlow shales. In: CIMP 2010 Field Trip Guidebook. Institute of Geological Sciences Polish Academy of Sciences (PAS) 51–55.

  • Melchin M.J. Sadler P.M. & Cramer B.D. 2012: The Silurian Period. In: Gradstein F.M. Ogg J.G. Schmitz M. & Ogg G.M. (Eds.): The Geologic Time Scale 2012 vol. 2. Elsevier 525–558.

  • Miall A.D. 2010: The geology of stratigraphic sequences (2nd edition). Springer Berlin 1–522.

  • Modliński Z. & Szymański B. 2001: The Silurian of the Nida Holy Cross Mts. and Radom areas Poland — a review. Geol. Quarterly 45 435–454.

  • Narkiewicz M. 2002: Ordovician through earliest Devonian development of the Holy Cross Mts. (Poland): Constraints from subsidence analysis and thermal maturity data. Geol. Quarterly 46 255–266.

  • Nawrocki J. Dunlap J. Pecskay Z. Krzemiński L. Żylińska A. Fanning M. Kozłowski W. Salwa S. Szczepanik Z. & Trela W. 2007: Late Neoproterozoic to Early Palaeozoic palaeogeography of the Holy Cross Mountains (Central Poland): an integrated approach. J. Geol. Soc. London 164 405–423.

  • Nawrocki J. Salwa S. & Pańczyk M. 2013: New 40Ar–39Ar age constraints for magmatic and hydrothermal activity in the Holy Cross Mts. (southern Poland). Geol. Quarterly 57 551–560.

  • Noble P.J. Zimmerman M.K. Holmden C. & Lenz A.C. 2005: Early Silurian (Wenlockian) δ13C profiles from the Cape Phillips Formation Arctic Canada and their relation to biotic events. Can. J. Earth Sci. 42 1419–1430.

  • Oksanen J. Blanchet F.G. Friendly M. Kindt R. Legendre P. McGlinn D. Minchin P.R. O’Hara R.B. Simpson G.L. Solymos P. Stevens M.H.H. Szoecs E. & Wagner H. 2018: Package ‘vegan’. Community ecology package. https://cran.r-project.org/package=vegan.

  • Paškevičius J. Lapinskas P. BrazauskasA. Musteikis P. & Jacyna J. 1994: Stratigraphic revision of the regional stages of the Upper Silurian part in the Baltic Basin. Geologija (Vilnius) 17 64–87.

  • Patzkowsky M.E. & Holland S.M. 2012: Stratigraphic paleobiology: understanding the distribution of fossil taxa in time and space. University of Chicago Press 1–256.

  • Peters S.E. & Foote M. 2002: Determinants of extinction in the fossil record. Nature 416 6879 420.

  • Porębska E. Kozłowska–Dawidziuk A. & Masiak M. 2004: The lundgreni event in the Silurian of the East European platform Poland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 213 271–294.

  • R Development Core Team 2015: R: A Language and Environment for Statistical Computing. Version 3.1.3. R Foundation for StatisticalComputing Vienna. https://www.r-project.org/.

  • Radzevičius S. 2006: Late Wenlock biostratigraphy and the Pristiograptus virbalensis group (Graptolithina) in Lithuania and the Holy Cross Mountains. Geol. Quarterly 50 333–344.

  • Radzevičius S. & Paškevičius J. 2005: Pristiograptus (Graptoloidea) from the Upper Wenlock of the Baltic Countries. Stratigraphy and Geological Correlation 13 159–169.

  • Radzevičius S. Spiridonov A. & Brazauskas A. 2014a: Integrated middle–upper Homerian (Silurian) stratigraphy of the Viduklė-61 well Lithuania. GFF 136 218–222.

  • Radzevičius S. Spiridonov A. & Brazauskas A. 2014b: Ap plication of Wavelets to the Cyclostratigraphy of the Upper Homerian (Silurian) Gėluva Regional Stage in the Viduklė-61 Deep Well (Western Lithuania). In: Rocha R. Pais J. Kullberg J.C. & Finney S. (Eds.): STRATI 2013. First International Congress on Stratigraphy. At the Cutting Edge of Stratigraphy. Springer 437–440.

  • Radzevičius S. Spiridonov A. Brazauskas A. Norkus A. Meidla T. & Ainsaar L. 2014c: Upper Wenlock δ13C chemostratigraphy conodont biostratigraphy and palaeoecological dynamics in the Ledai-179 drill core (Eastern Lithuania). Estonian Journal of Earth Sciences 63 293–299.

  • Radzevičius S. Spiridonov A. Brazauskas A. Dankina D. Rimkus A. Bičkauskas G. Kaminskas D. Meidla T. & Ainsaar L. 2016: Integrated stratigraphy conodont turnover and palaeoenvironments of the upper Wenlock and Ludlow in the shallow marine succession of the Vilkaviškis-134 core (Lithuania). Newsletters on Stratigraphy 49 321–336.

  • Radzevičius S. Tumakovaitė B. & Spiridonov A. 2017: Upper Home-rian (Silurian) high-resolution correlation using cyclostratigraphy: an example from western Lithuania. Acta Geologica Polonica 67 307–322.

  • Raup D.M. & Crick R.E. 1979: Measurement of faunal similarity in paleontology. J. Paleontol. 53 1213–1227.

  • Rickards R.B. & Palmer D.C. 2002: Gothograptus? meganassa sp. nov. an unusually large retiolitid graptoloid from the Late Wenlock ludensis Biozone of Long Mountain Shropshire UK. Special Papers in Palaeontology 67 225–232.

  • Ryka W. & Tomczyk H. 1959: Bentonites in old Palaeozoic sediments from the Holy Cross Mountains. Geol. Quarterly 3 710–712 (in Polish with English summary).

  • Saltzman M.R. 2001: Silurian δ13C stratigraphy: a view from North America. Geology 29 671–674.

  • Samtleben C. Munnecke A. Bickert T. & Pätzold J. 1996: The Silurian of Gotland (Sweden): facies interpretation based on stable isotopes in brachiopod shells. Geologische Rundschau 85 278–292.

  • Samtleben C. Munnecke A. & Bickert T. 2000: Development of facies and C/O-isotopes in transects through the Ludlow of Gotland: evidence for global and local influences on a shallow-marine environment. Facies 43 1–38.

  • Shebolkin D.N. & Männik P. 2014: Wenlock strata in the southern part of the Chernyshev Ridge (Timan–northern Ural region). Litosfera/Lithosphere 1 33−40.

  • Spiridonov A. 2017: Recurrence and cross recurrence plots reveal the onset of the Mulde event (Silurian) in the abundance data for Baltic conodonts. The Journal of Geology 125 381–398.

  • Spiridonov A. Brazauskas A. & Radzevičius S. 2016: Dynamics of abundance of the mid-to late Pridoli conodonts from the Eastern part of the Silurian Baltic Basin: multifractals state shifts and oscillations. Am. J. Sci. 316 4363–400.

  • Spiridonov A. Kaminskas D. Brazauskas A. & Radzevičius S. 2017a: Time hierarchical analysis of the conodont paleocommunities and environmental change before and during the onset of the lower Silurian Mulde bioevent–A preliminary report. Global Planet. Change 157 153–164.

  • Spiridonov A. Venckutė-Aleksienė A. & Radzevičius S. 2017b: Cyst size trends in the genus Leiosphaeridia across the Mulde (lower Silurian) biogeochemical event. Bulletin of Geosciences 92 391–404.

  • Štorch P. 1994: Graptolite biostratigraphy of the Lower Silurian (Llandovery and Wenlock) of Bohemia. Geol. J. 29 137–165.

  • Štorch P. Manda Š. & Loydell D.K. 2014: The early Ludfordian leintwardinensis graptolite event and the Gorstian–Ludfordian boundary in Bohemia (Silurian Czech Republic). Palaeontology 57 1003–1043.

  • Štorch P. Manda Š. Slavík L. & Tasáryová Z. 2016: Wenlock–Ludlow boundary interval revisited: New insights from the off-shore facies of the Prague Synform Czech Republic. Can. J. Earth Sci. 53 666–673.

  • Sullivan N.B. McLaughlin P.I. Emsbo P. Barrick J.E. & Premo W.R. 2016: Identification of the late Homerian Mulde Excursion at the base of the Salina Group (Michigan Basin USA). Lethaia 49 591–603.

  • Sullivan N.B. Loydell D.K. Montgomery P. Molyneux S.G. Zalasiewicz J. Ratcliffe K.T. & Lewis G. 2018: A record of Late Ordovician to Silurian oceanographic events on the margin of Baltica based on new carbon isotope data elemental geochemistry and biostratigraphy from two boreholes in central Poland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 490 95–106.

  • Tomczyk H. 1958: The lower Ludlovian in a bore-hole at Mędrzechów near Tarnów (Subcarpatians) (Preliminary Report). Geol. Quarterly 2 311–320 (in Polish with English summary).

  • Tomczyk H. 1962: Stratigraphic problems of the Ordovician and Silurian in Poland in the light of recent studies. Prace Instytutu Geologicznego 35 1–134 (in Polish with English summary).

  • Tomczykowa E. 1957: Trilobites from Wenlock and Lower Ludlow graptolitic shales of the Swięty Krzyż Mountains. Prace Instytutu Geologicznego 122 83–114 (in Polish with English summary).

  • Tomczykowa E. 1993: Upper Ludlow trilobites from the southern part of the Holy Cross Mts. Geol. Quarterly 37 359–384.

  • Ulst R. 1974: The early sequence of pristiograptids in conterminous deposits of Wenlock and Ludlow of the Middle Prebaltic. In: Obut A. (Ed.): Graptolity SSSR. Nauka 90–105 (in Russian).

  • Urbanek A. Radzevičius S. Kozłowska A. & Teller L. 2012: Phyletic evolution and iterative speciation in the persistent Pristiograptus dubius lineage. Acta Palaeontologica Polonica 57 589–611.

  • Vecoli M. Riboulleau A. & Versteegh G.J.M. 2009: Palynology organic geochemistry and carbon isotope analysis of a latest Ordovician through Silurian clastic succession from borehole Tt1 Ghadamis Basin southern Tunisia North Africa: palaeoenvironmental interpretation. Palaeogeogr. Palaeoclimatol. Palaeo ecol.273 378–394.

  • Venckutė-Aleksienė A. Radzevičius S. & Spiridonov A. 2016: Dynamics of phytoplankton in relation to the upper Homerian (Lower Silurian) lundgreni event — An example from the Eastern Baltic Basin (Western Lithuania). Mar. Micropaleont. 126 31–41.

  • Wenzel B. & Joachimski M.M. 1996: Carbon and oxygen isotopic composition of Silurian brachiopods (Gotland/Sweden): palaeoceanographic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol.122 143–166.

  • Walczak A. & Belka Z. 2017: Fingerprinting Gondwana versus Baltica provenance: Nd and Sr isotopes in Lower Paleozoic clastic rocks of the Małopolska and Łysogóry terranes southern Poland. Gondwana Res. 45 138–151.

  • Zalasiewicz J.A. & Williams M. 1999: Graptolite biozonation of the Wenlock (Silurian) rocks of the Builth Wells district central Wales. Geol. Mag. 136 263–283

  • Zalasiewicz J.A. Taylor L. Rushton A.W.A. Loydell D.K. Rickards R.B. & Williams M. 2009: Graptolites in British stratigraphy. Geol. Mag. 146 785–850.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.699
5-year IMPACT FACTOR: 1.676

CiteScore 2018: 1.76

SCImago Journal Rank (SJR) 2018: 0.627
Source Normalized Impact per Paper (SNIP) 2018: 1.203

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 38 38 5
PDF Downloads 54 54 4