Multiphase carbonate cementation in the Miocene Pétervására Sandstone (North Hungary): implications for basinal fluid flow and burial history

Open access


The paper focuses on the reservoir heterogeneity of a sandstone formation in which the main issue is the evaluation of diagenetic features. Integrated data from field observations as well as petrographic and geochemical analyses from surface and core sections from different structural settings were applied. In the shallow marine Pétervására Sandstone, eogenetic minerals are comprised of calcite, pyrite and siderite; mesogenetic minerals are albite, ankerite, calcite, quartz, mixed layer clays and kaolinite. Dissolution occurred during mesogenetic and telogenetic phases. Ankerite is only present in the core setting, where the sandstone is at ca. 900 m depth and diagenetic calcite predates quartz cementation. Based on stable isotopic values (δ13 CV-PDB −18.3 to −11.4 ‰ and δ18 OV-PDB −9.5 to −7.2 ‰), diagenetic calcite is of mesogenetic origin and was precipitated from fluids migrated along fault zones from the underlying, organic matter-rich formation. In outcrop setting, on the other hand, calcite is present in a larger quantity and postdates quartz cementation. Carbon isotope data (δ13 CV-PDB = −9.9 to −5.1 ‰) indicate less contribution of light isotope, whereas more negative oxygen isotopic values (OV-PDB = −13.1 to −9.9 ‰) likely imply higher temperature of mesogenetic fluids.However, carbon–oxygen isotope covariation can indicate precipitation from meteoric fluid. In this case, further analyses are required to delineate the final model.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Aagaard P. Egeberg Z.P.K. Saigal G.C. Morad S. & Bjorlykke K. 1990: Diagenetic albitization of detrital K-feldspars in Jurassic Lower Cretaceous and Tertiary clastic reservoir rocks from offshore Norway II. Formation water chemistry and kinetic considerations. J. Sediment. Petrol. 60 575–581.

  • Abreu V.S. & Anderson J.B. 1998: Glacial eustasy during theCenozoic: sequence stratigraphic implications. Am. Assoc. Pet. Geol. Bull. 82 1385–1400.

  • Allan J.R. & Wiggins W.D. 1993: Dolomite reservoirs: Geochemical Techniques for Evaluating Origin and Distribution. American Association of Petroleum Geologists Continuing Education Course Note Series Tulsa Oklahoma 1–170.

  • Badics B. & Vető I. 2012: Source rocks and petroleum systems in the Hungarian part of the Pannonian Basin: The potential for shale gas and shale oil plays. Mar. Pet. Geol. 31 53–69.

  • Baker J.C. Kassan J. & Hamilton P.J.O.E. 1995: Early Diagenetic Siderite as an Indicator of Depositional Environment in the Triassic Rewan Group Southern Bowen Basin Eastern Australia. Sedimentology 43 77–88.

  • Báldi T. 1983: The Oligocene and Lower Miocene formations ofHungary. Akadémiai Kiadó Budapest 1–293 (in Hungarian).

  • Báldi T. & Báldi-Beke M. 1985: The evolution of the Hungarian Paleogene basins. Acta Geol. Hungarica. 28 5–28 (in Hungarian).

  • Beke B.K. 2016: The role of deformation bands in Cenozoic structural evolution of Northern Hungary PhD thesis. Eötvös Loránd University Budapest 1–148 (in Hungarian).

  • Berner R. A. Leeuw J.W. De Spiro B. Murchison D.G. & Eglinton G. 1985: Sulphate Reduction Organic Matter Decomposition and Pyrite Formation. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Sci. 315 25–38.

  • Bojanowski M.J. Barczuk A. & Wetzel A. 2014: Deep-burial alteration of early-diagenetic carbonate concretions formed in Palaeozoic deep-marine greywackes and mudstones (Bardo Unit Sudetes Mountains Poland). Sedimentology. 61 1211–1239.

  • Calvo R. Ayalon A. Bein A. & Sass E. 2011: Chemical and isotopic composition of diagenetic carbonate cements and its relation to hydrocarbon accumulation in the Heletz-Kokhav oil field (Israel). J. Geochemical Explor. 108 88–98.

  • Dickson J. 1966: Carbonate identification and genesis as revealed by staining. J. Sediment. Petrol. 36 491–505.

  • Dutton S.P. 2008: Calcite cement in Permian deep-water sandstones Delaware Basin west Texas: Origin distribution and effect on reservoir properties. Am. Assoc. Pet. Geol. Bull. 92 765–787.

  • El-ghali M.A.K. Tajori K.G. Mansurbeg H. Ogle N. & Kalin R.M. 2006: Origin and timing of siderite cementation in Upper Ordovician glaciogenic sandstones from the Murzuq basin SW Libya. Mar. Pet. Geol. 23 459–471.

  • Folk R.L. 1974: Petrology of sedimentary rocks. Hemphill Publishing Company. Austin Texas 1–190.

  • Friedman I. & O’Neil J. 1977: Compilation of Stable Isotope Fractionation Factors of Geochemical Interest. In: M. Fleischer (Ed.): Data of Geochemistry. US Geological Survey Professional Paper 440-KK Washington.

  • Gier S. Worden R.H. Johns W.D. & Kurzweil H. 2008: Diagenesis and reservoir quality of Miocene sandstones in the Vienna Basin Austria. Mar. Pet. Geol. 25 681–695.

  • Gradstein F. & Ogg J. 2004: Geologic Time Scale 2004 — why how and where next!. Lethaia 37 175–181.

  • Grundtner M.L. Gross D. Gratzer R. Misch D. Sachsenhofer R.F. & Scheucher L. 2017: Carbonate cementation in upper eocene clastic reservoir rocks from the north alpine foreland basin (Austria). Austrian J. Earth Sci. 110 55–75.

  • Grundtner M.L. Gross D. Linzer H.G. Neuhuber S. Sachsenhofer R.F. & Scheucher L. 2016: The diagenetic history of Oligocene-Miocene sandstones of the Austrian north Alpine foreland basin. Mar. Pet. Geol. 77 418–434.

  • Hámor T. 1985: Geological report on Sámsonháza- 16/a well. Geological Institute of Hungary Budapest 1–16

  • Hendry J.P. 2002: Geochemical trends and palaeohydrological significance of shallow burial calcite and ankerite cements in Middle Jurassic strata on the East Midlands Shelf (onshore UK). Sediment. Geol. 151 149–176.

  • Hendry J.P. Wilkinson M. Fallick A.E. & Haszeldine R.S. 2000: Ankerite cementation in deeply buried Jurassic sandstone reservoirs of the central North Sea. J. Sediment. Res. 70 227–239.

  • Horváth F. & Tari G. 1999: IBS Pannonian Basin project: a review of the main results and their bearings on hydrocarbon exploration. Geol. Soc. London Spec. Publ. 156 195–213.

  • Horváth F. Musitz B. Balázs A. Végh A. Uhrin A. Nádor A. & Koroknai B. 2015: Geothermics Evolution of the Pannonian basin and its geothermal resources. Geothermics 53 328–352.

  • Kantorowicz J.D. 1985: The origin of authigenic ankerite from the Ninian Field UK North Sea. Nature 315 214–216.

  • Karim A. Pe-Piper G. & Piper D.J.W. 2010: Controls on diagenesis of Lower Cretaceous reservoir sandstones in the western Sable Subbasin offshore Nova Scotia. Sediment. Geol. 224 65–83.

  • Kázmér M. 2004: Hydrocarbon geology o f northem Hungary (Palaeogene basin) in: Kázmér M. (Ed.) General Geological Review Journal of the Section for General Geology Hungarian Geological Society. Hantken Kiadó Budapest 9–120.

  • Khalifa M.A. Mansurbeg H. Morad D. Morad S. Al-Aasm I.S. Spirov P. Ceriani A. & De Ros L.F. 2017: Quartz and Fe-dolomite Cements Record Shifts in Formation-water Chemistry and Hydrocarbon Migration in Devonian Shoreface Sandstones Ghadamis Basin Libya. J. Sediment. Res. 88 38–57.

  • Lakatos L. Varadi M. Pogacsas G. Nagymarosy A. Kis B. & Barvitz A. 1991: Sequence stratigraphy of Paleogene Formations in Zagyva Trough. Hung. Geophys. 20–37 (in Hungarian).

  • Land L.S. & Milliken K.L. 1981: Feldspar diagenesis in the Frio formation Brazoira County Texas Gulf Coast. Geology 9 314–318.

  • Lenkey L. Dövényi P. Horváth F. & Cloetingh S. a. P.L. 2001: Geothermics of the Pannonian basin and its bearing on the neotectonics. EGU Stephan Mueller Spec. Publ. Ser. 3 29–40.

  • Lima R.D. & De Ros L.F. 2002: The role of depositional setting and diagenesis on the reservoir quality of Devonian sandstones from the Solimões Basin Brazilian Amazonia. Mar. Pet. Geol. 19 1047–1071.

  • Lonoy A. Akselsen J. & Ronning K. 1986: Diagenesis of a deeply buried sandstone reservoir; Hild Field northern North Sea. Clay Miner. 497–511.

  • Makeen Y.M. Abdullah W.H. Ayinla A.A. Hakimi M.H. & Sia S.G. 2016: Sedimentology diagenesis and reservoir quality of the upper Abu Gabra Formation sandstones in the Fula Sub-basin Muglad Basin Sudan. Mar. Pet. Geol. 77 1227–1242.

  • Maraschin A.J. Mizusaki A.M.P. & De Ros L.F. 2004: Near-Surface

  • K-Feldspar Precipitation in Cretaceous Sandstones from the Potiguar Basin Northeastern Brazil. J. Geol. 112 317–334.

  • Marfil R. Delgado A. Rossi C. La Iglesia A. & Ramseyer K. 2003: Origin and diagenetic evolution of kaolin in reservoir sandstones and associated shales of the Jurassic and Cretaceous Salam Field Western Desert (Egypt). In: Worden R.H. Morad S. (Eds.): Sandstone Diagenesis: The Evolution of Sand to Stone. International Association of Sedimentologists Bodmin Corn-wall. 319–342.

  • Márton E. & Fodor L. 1995: Combination of palaeomagnetic and stress data: a case study from Northern Hungary. Tectonophysics 242 99–114.

  • McBride E.F. Milliken K. Cavazza W. Cibin U. Fontana D. Picard M.D. & Zuffa G.G. 1994: Patterns of calcite cementation at the outcrop scale in Tertiary sandstones. AAPG Annu. Conv. 1–209.

  • McKinley J.M. Worden R.H. & Ruffell a H. 2002: Smectite in sandstones: A review of the controls on occurrence and behaviour during diagenesis. Int. Assoc. Sedimentol. Spec. Publ. 109–128.

  • Milota K. Kovacs A. & Galicz Z. 1995: Petroleum potential of the North Hungarian Oligocene sediments. Pet. Geosci. 1 81–87.

  • Moore S.E. Ferrell R.E. & Aharon P. 1992: Diagenetic siderite and other ferroan carbonates in a modem subsiding marsh sequence. J. Sediment. Petrol. 62 357–366.

  • Morad S. 1998: Carbonate Cementation in Sandstones: Distribution Patterns and Geochemical Evolution. In: Morad S. (Ed.): Carbonate Cementation in Sandstones: Distribution Patterns and Geochemical Evolution. Special Publication 26 of the IASUniversity Press Cambridge 1–26.

  • Morad S. Márfil R. & Pena J. 1989: Diagenetic K-feldspar pseudo-morphs in the Triassic Buntsandstein sandstones of the Iberian Range Spain. Sedimentology 36 635–650.

  • Morad S. Ketzer J.M. & De Ros L.F. 2000: Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: Implications for mass transfer in sedimentary basins. Sedimentology 47 95–120.

  • Mozley P.S. 1989: Relation between depositional environment and the elemental composition of early diagenetic siderite. Geology 17 704–706.

  • Nagymarosy A. 2012: Accretion of the ALCAPA Mega-Unit. In: Haas J. Hámor G. Jámbor Á. Kovács S. Nagymarosy A. & Szederkényi T. (Eds.): Geology of Hungary. Springer-Verlag Berlin Heidelberg 81–102.

  • Nickel E.H. & Grice J.D. 1998: The IMA Commission on New Minerals and Mineral Names: procedures and guidelines on mineral nomenclature 1998. Can. Mineral. 36 1–14.

  • Odin G. & Matter A. 1981: De glauconiarum origine. Sedimentology 28 611–641.

  • Oluwadebi A.G. Taylor K.G. & Dowey P.J. 2018: Diagenetic controls on the reservoir quality of the tight gas Collyhurst Sandstone Formation Lower Permian East Irish Sea Basin United Kingdom. Sediment. Geol. 371 55–74.

  • Petrik A. Beke B. & Fodor L. 2014: Combined analysis of faults and deformation bands reveals the Cenozoic structural evolution of the southern Bükk foreland (Hungary). Tectonophysics 633 43–62.

  • Püspöki Z. Hámor-Vidó M. Pummer T. Sári K. Lendvay P. Selmeczi I. Detzky G. Gúthy T. Kiss J. Kovács Z. Prakfalvi P. McIntosh R.W. Buday-Bódi E. Báldi K. & Markos G. 2017: A sequence stratigraphic investigation of a Miocene formation supported by coal seam quality parameters — Central Paratethys N-Hungary. Int. J. Coal Geol. 179 196–210.

  • Pye K. Dickson J. Schiavon N. Coleman M.L. & Cox M. 1990: Formation of siderite-Mg-calcite-iron sulphide concretions in intertidal marsh and sandflat sediments north Norfolk England. Sedimentology 37 325–343.

  • Rögl F. & Steininger F.F. 1983: Vom Zerfall der Tethys zu Mediterran und Paratethys. Wien. Ann. Naturhistorische Museum 85 135–163.

  • Royden L. & Baldi T. 1988: Early Cenozoic tectonics and paleogeography of the Pannonian basin and surrounding regions. In: Royden L.R. Horvath F. (Eds.): The Pannonian Basin a Study in Basin Evolution. Amer. Assoc. Petro Geol. Memoir 45 1–16.

  • Saigal G.C.G. Morad S. Bjorlykke K. Egeberg P.K. & Aagaard P. 1988: Diagenetic albitization of detrital K-feldspar in Jurassic Lower Cretaceous and Tertiary clastic reservoir rocks from offshore Norway; I Textures and origin. J. Sediment. Petrol. 58 1003–1013.

  • Siklósy Z. Demény A. Leél-Őssy S. Szenthe I. Lauritzen S.-E. & Shen C. 2011: The dating of stalagmites and their palaeoclimatological significance. Bull. Hungarian Geol. Soc. 141 73–88.

  • Szőcs E. Hips K. Józsa S. & Bendő Z. 2015: Diagenetic evolution of the Lower Miocene Pétervására Sandstone Formation. Bull. Hung. Geol. Soc. 145 351–366 (in Hungarian).

  • Sztanó O. 1994: The tide-influenced Petervasara Sandstone early Miocene northern Hungary: sedimentology palaeogeography and basin development. Geol. Ultraiectina Uthrecht 120 155.

  • Sztanó O. & Boer P. 1995: Basin dimensions and morphology as controls on amplification of tidal motions (the Early Miocene North Hungarian Bay). Sedimentology 42 665–682.

  • Sztanó O. & Józsa S. 1996: Interaction of basin-margin faults and tidal currents on nearshore sedimentary architecture and composition: a case study from the Early Miocene of northern Hungary. Tectonophysics 266 319–341.

  • Sztanó O. & Tari G. 1993: Early Miocene basin evolution in Northern Hungary: tectonics and eustasy. Tectonophysics 261 485–502. Tari G. Báldi T. & Báldi-Beke M. 1993: Paleogene retroarc flexural basin beneath the Neogene Pannonian Basin: a geodynamic model. Tectonophysics 226 433–455.

  • Tóth J. & Almasi I. 2001: Interpretation of observed fluid potential patterns in a deep sedimentary basin under tectonic compression: Hungarian Great Plain Pannonian Basin. Geofluids 1 11–36.

  • Van Den Bril K. & Swennen R. 2008: Sedimentological control on carbonate cementation in the Luxembourg Sandstone Formation. Geol. Belgica 12 3–23.

  • Virág M. Mindszenty A. Surányi G. Molnár M. & Leél-Őssy S. 2013: A Búboskemence cseppkőlefolyás. In: Mindszenty A. (Ed.): Budapest Földtani Értékek És Az Ember. Városgeológiai Tanulmányok. ELTE Eötvös Kiadó Budapest 245–248 (in Hungarian).

  • Waldmann S. & Gaupp R. 2016: Grain-rimming kaolinite in Permian Rotliegend reservoir rocks. Sediment. Geol. 335 17–33.

  • Wanas H.A. 2008: Calcite-cemented concretions in shallow marine and fluvial sandstones of the Birket Qarun Formation (Late Eocene) El-Faiyum depression Egypt: Field petrographic and geochemical studies: Implications for formation conditions. Sediment. Geol. 212 40–48.

  • Wang J. Cao Y. Liu K. Liu J. Xue X. & Xu Q. 2016: Pore fluid evolution distribution and water-rock interactions of carbonate cements in red-bed sandstone reservoirs in the Dongying Depression China. Mar. Pet. Geol. 72 279–294.

  • Wang J. Cao Y. Liu K. Costanzo A. & Feely M. 2018: Diagenesis and evolution of the lower Eocene red-bed sandstone reservoirs in the Dongying Depression China. Mar. Pet. Geol. 94 230–245.

  • Yuan G. Cao Y. Cluyas J. Li X. Xi K. Wang Y. Jia Z. Sun P. & Oxtoby N.H. 2015: Feldspar dissolution authigenic clays and quartz cements in open and closed sandstone geochemical systems during diagenesis: Typical examples from two sags in Bohai Bay Basin East China. Am. Assoc. Pet. Geol. Bull. 99 2121–2154.

  • Yuan G. Cao Y. Zhang Y. & Gluyas J. 2017: Diagenesis and reservoir quality of sandstones with ancient “deep” incursion of meteoric freshwater —An example in the Nanpu Sag Bohai Bay Basin East China. Mar. Pet. Geol. 82 444–464.

  • Zhang C.L. Horita J. Cole D.R. Zhou J. Lovley D.R. & Phelps T.J. 2001: Temperaturedependent oxygen and carbon isotope fractionation of biogenic siderite. Geochim. Cosmochim. Acta 65 2257–2271.

Journal information
Impact Factor

IMPACT FACTOR 2018: 1.699
5-year IMPACT FACTOR: 1.676

CiteScore 2018: 1.76

SCImago Journal Rank (SJR) 2018: 0.627
Source Normalized Impact per Paper (SNIP) 2018: 1.203

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 102 58 3
PDF Downloads 111 70 7