Carbon cycle history through the Middle Jurassic (Aalenian – Bathonian) of the Mecsek Mountains, Southern Hungary

Open access


A carbonate carbon isotope curve from the Aalenian–Bathonian interval is presented from the Óbánya valley, of the Mecsek Mountains, Hungary. This interval is certainly less well constrained and studied than other Jurassic time slices. The Óbánya valley lies in the eastern part of the Mecsek Mountains, between Óbánya and Kisújbánya and provides exposures of an Aalenian to Lower Cretaceous sequence. It is not strongly affected by tectonics, as compared to other sections of eastern Mecsek of the same age. In parts, a rich fossil assemblage has been collected, with Bathonian ammonites being especially valuable at this locality. The pelagic Middle Jurassic is represented by the Komló Calcareous Marl Formation and thin-bedded limestones of the Óbánya Limestone Formation. These are overlain by Upper Jurassic siliceous limestones and radiolarites of the Fonyászó Limestone Formation. Our new data indicate a series of carbon isotope anomalies within the late Aalenian and early-middle Bajocian. In particular, analysis of the Komló Calcareous Marl Formation reveals a negative carbon isotope excursion followed by positive values that occurs near the base of the section (across the Aalenian–Bajocian boundary). The origin of this carbon-isotope anomaly is interpreted to lie in significant changes to carbon fluxes potentially stemming from reduced run off, lowering the fertility of surface waters which in turn leads to lessened primary production and a negative δ13C shift. These data are comparable with carbonate carbon isotope records from other Tethyan margin sediments. Our integrated biostratigraphy and carbon isotope stratigraphy enable us to improve stratigraphic correlation and age determination of the examined strata. Therefore, this study of the Komló Calcareous Marl Formation confirms that the existing carbon isotope curves serve as a global standard for Aalenian–Bathonian δ13C variation.

Aguado R., O’Dogherty L. & Sandoval J. 2008: Fertility changes in surface waters during the Aalenian (mid-Jurassic) of the Western Tethys as revealed by calcareous nannofossils and carbon-cycle perturbations. Mar. Micropaleontol. 68, 268–285.

Ait-Itto F-Z., Price G.D., Addi, A.A., Chafiki D. & Mannani I. 2017: Bulk-carbonate and belemnite carbon-isotope records across the Pliensbachian-Toarcian boundary on the northern margin of Gondwana (Issouka, Middle Atlas, Morocco). Palaeogeogr. Palaeoclimatol. Palaeoecol. 466, 128–136.

Aurell M., Robles S., Badenas B., Rosales I., Quesada S., Melendez G. & Garcıa-Ramos J.C. 2003: Transgressive–regressive cycles and Jurassic palaeogeography of northeast Iberia. Sediment. Geol. 162, 239–271.

Bachan A., van de Schootbrugge B., Fiebig J., McRoberts C.A., Ciarapica C. & Payne J.L. 2012: Carbon cycle dynamics following the end-Triassic mass extinction: Constraints from paired δ13Ccarb and δ13Corg records. Geochem. Geophys. Geosyst. 13, Q09008.

Bartolini A., Baumgartner P.O. & Hunziker J.C. 1996: Middle and Late Jurassic carbon stable-isotope stratigraphy and radiolarite sedimentation of the Umbria-Marche Basin (Central Italy). Eclogae Geol. Helv. 89, 811–844.

Bartolini A., Baumgartner P.O. & Guex J., 1999: Middle and Late Jurassic radiolarian palaeoecology versus carbon-isotope stratigraphy. Palaeogeogr. Palaeoclimatol. Palaeoecol. 145, 43–60.

Bartolini A. & Larson R. 2001: The Pacific microplate and the Pangea supercontinent in the Early-Middle Jurassic. Geology 29, 735–738.

Bill M., Baumgartner P.O., Hunziker J.C. & Sharp Z.D. 1995: Carbon isotope stratigraphy of the Liesberg Beds Member (Oxfordian, Swiss Jura) using echinoids and crinoids. Eclogae Geol. Helv. 88, 135–155.

Bodin S., Krencker F., Kothe T., Hoffmann R., Mattioli E., Heimhofer U. & Kabiri L. 2016: Perturbation of the carbon cycle during the late Pliensbachian – Early Toarcian: New insight from high–resolution carbon isotope records in Morocco. J. Afr. Earth Sci. 116, 89–104.

Bodin S., Hönig, M.R., Krencker F-N., Danisch J. & Kabiri L. 2017: Neritic carbonate crisis during the Early Bajocian: Divergent responses to a global environmental perturbation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468, 184–199

Brigaud B., Durlet C., Deconinck J-F., Vincent B., Pucéat E., Thierry J. & Trouiller A. 2009: Facies and climate/environmental changes recorded on a carbonate ramp: A sedimentological and geochemical approach on Middle Jurassic carbonates (Paris Basin, France). Sediment. Geol. 222, 181–206.

Dzyuba O.S., Guzhikov A.Yu., Manikin A.G., Shurygin B.N., Grishchenko V.A., Kosenko I.N., Surinskii, A.M., Seltzer V.B. & Urman O.S. 2017. Magneto- and carbon-isotope stratigraphy of the Lower–Middle Bathonian in the Sokur section (Saratov, Central Russia): implications for global correlation. Russ. Geol. Geophys. 58, 206–224.

Enay R., Guiraud R., Ricou, L.E., Mangold C., Thierry J., Cariou E., Bellion Y. & Dercourt J., 1993: Callovian palaeoenvironments (162 to 158 Ma). In: Dercourt, J., Ricou, L.E., Vrielynck, B. (Eds.): Atlas Tethys Palaeoenvironmental Maps. Maps, BEICIP-FRANLAB, Rueil-Malmaison.

Forgó L. Moldvay L. Stefanovics P. & Wein, G. 1966: Explanatory notes to the 1:200,000 scale geological map. Hungarian Geological Survey, Budapest, 1–196 (in Hungarian).

Főzy I. (Ed.) 2012: Lithostratigraphic units of Hungary. Jurassic. Magyarhoni Földtani Társulat, Budapest, 1–235 (in Hungarian).

Galácz A. 1994: Ammonite stratigraphy of the Bathonian red, nodular marl in the Mecsek Mts (S Hungary). Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae, Sectio Geologica 30, 115–150.

Haas J., Hámor G. & Korpás L. 1999: Geological setting and tectonic evolution of Hungary. Geologica Hungarica series Geologica 24, 179–196.

Hallam A. 2001: A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge. Palaeogeogr. Palaeoclimatol. Palaeoecol. 167, 23–37.

Hardenbol J., Thierry J., Farley M.B., Jacquin T., De Graciansky P.C. & Vail P.R. 1998: Mesozoic and Cenozoic sequence chronostratigraphic framework of European Basins. Jurassic sequence chronostratigraphy. In: De Graciansky, P.C., Hardenbol, J., Jacquin, J. & Vail P.R. (Eds.): Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. SEPM Spec. Publ. 60, chart 6.

Haq B.U. & Al-Qahtani A.M. 2005: Phanerozoic cycles of sea-level change on the Arabian Platform. GeoArabia 10, 127–160.

Hesselbo S.P., Morgans-Bell H.S., McElwain J.C., Rees P.M., Robinson S.A. & Ross C.E. 2003. Carbon-Cycle Perturbation in the Middle Jurassic and accompanying changes in the terrestrial paleoenvironment. J. Geol. 111, 259–276.

Hoffman A., Gruszczynski, M., Malkowski K., Halas S. Matyja B.A. & Wierzbowski A. 1991: Carbon and oxygen isotope curves for the Oxfordian of central Poland. Acta Geol. Polonica 43, 157–164.

Hönig M.R. & John C.M. 2015: Sedimentological and isotopic heterogeneities within a Jurassic carbonate ramp (UAE) and implications for reservoirs in the Middle East. Mar. Petrol. Geol. 68, 240–257.

Hudson J.D., 1977: Stable isotopes and limestone lithification. J. Geol. Soc. London 133, 637–660.

Immenhauser A., Kenter J.A.M., Ganssen G., Bahamonde J.R., Van Vliet A. & Saher M.H., 2002: Origin and significance of isotope Shifts in Pennsylvanian Carbonates (Asturias, NW Spain). J. Sediment. Res. 72, 82–94.

Jenkyns H.C. 1996: Relative sea-level change and carbon isotopes: data from the Upper Jurassic (Oxfordian) of central and Southern Europe. Terra Nova 8, 75–85.

Jourdan F., Féraud, G., Bertrand H., Watkeys M.K. & Renne P.R. 2008: 40Ar/39Ar ages of the sill complex of the Karoo large igneous province: implications for the Pliensbachian–Toarcian climate change. Geochem. Geophys. Geosys. 9, Q06009.

Koppers A.A.P., Staudigel H. & Duncan R.A. 2003: High-resolution 40Ar/39Ar dating of the oldest oceanic basement basalts in the western Pacific basin. Geochem. Geophys. Geosys. 4, art. no. 8914.

Leinfelder R.R., Schmid, D.U., Nose M. & Werner W. 2002: Jurassic reef patterns: the expression of changing globe. In: Kiessling W., Flügel E. & Golonka J. (Eds): Phanerozoic reef patterns. SEPM Spec. Publ. 72, 465–520.

McArthur J.M., Algeo T.J., van de Schootbrugge B., Li Q. & Howarth R.J. 2008: Basinal restriction, black shales, and the Early Toarcian (Jurassic) oceanic anoxic event. Paleoceanography 23, PA4217.

McElwain J.C., Wade-Murphy J. & Hesselbo S.P. 2005: Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals. Nature 435, 479–482.

Meijers M.J.M., Vrouwe B., Van Hinsbergen D.J.J., Kuiper K.F., Wijbrans J., Davies G.R., Stephenson R.A., Kaymakci N., Matenco L. & Saintot A., 2010: Jurassic arc volcanism on Crimea (Ukraine): Implications for the paleo-subduction zone configuration of the Black Sea region. Lithos 119, 412–426.

Némedi-Varga Z. 1998: The stratigraphy of the Jurassic units of the Mecsek Mountains and Villányi Mountains [A Mecsek és a Villányi Egység Jura képződményeinek rétegtana]. In: Bérci I. & Jámbor A. (eds): The stratigraphy of the Hungarian geological units [Magyarország geológiai képződményekinek rétegtana]. MOL Hun. Oil Gas Comp. and Geol. Inst. Hun., Budapest, 319–336 (in Hungarian).

Nunn E.V., Price G.D., Hart M. B., Page K.N. & Leng M.J. 2009: Terrestrial and marine carbon isotope signals from the Callovian–Kimmeridgian (Late Jurassic) succession at Staffin Bay, Isle of Skye, Scotland. J. Geol. Soc. London 166, 633–641.

Odin G.S., Gillot P.Y., Lordkipanidze M., Hernandez J. & Dercourt J. 1993: 1st datings of ammonite-bearing Bajocian suites from Caucasus (Georgia) — K–Ar ages of volcanic hornblendes. Comptes rendus de l’Académie des sciences, Série II 317, 629–638.

O’Dogherty L., Sandoval J., Bartolini A., Bruchez S., Bill M. & Guex J. 2006: Carbon–isotope stratigraphy and ammonite faunal turnover for the Middle Jurassic in the Southern Iberian palaeomargin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 239, 311–333.

Ogg, J.G. & Hinnov L.A. 2012: Chapter 26 – Jurassic. In: Gradstein F., Ogg J., Schmitz M. & Ogg G. (Eds.): The Geologic Time Scale 2012. Elsevier, Boston, 731–791.

Pálfy J., Demény A., Haas J., Hetényi M., Orchard M.J. & Vető I. 2001: Carbon isotope anomaly and other geochemical changes at the Triassic–Jurassic boundary from a marine section in Hungary. Geology 29, 1047–1050.

Pankhurst R.J., Riley T.R., Fanning C.M. & Kelley S.P. 2000: Episodic silicic volcanism in Patagonia and the Antarctic Peninsula: Chronology of magmatism associated with the breakup of Gondwana. J. Petrol. 41, 605–625.

Pittet B. & Strasser A. 1998: Depositional sequences in deep-shelf environments formed through carbonate-mud export from the shallow platform (Late Oxfordian, German Swabian Alb and eastern Swiss Jura). Eclogae Geol. Helv. 91, 149–169.

Price G.D. 2010: Carbon–isotope stratigraphy and temperature change during the early–Middle Jurassic Toarcian–Aalenian), Raasay, Scotland, UK. Palaeogeogr. Palaeoclimatol. Palaeoecol. 285, 255–263.

Price G.D., Főzy I. & Pálfy J. 2016: Carbon cycle history through the Jurassic–Cretaceous boundary: A new global δ13C stack. Palaeogeogr. Palaeoclimatol. Palaeoecol. 451, 46–61.

Raucsik B. 1997: Stable isotopic composition of the Komló Calcareous Marl Formation (“spotted marl” s. str.), Mecsek Mountains, S. Hungary. Acta Mineralogica-Petrographica 38, 95–109.

Raucsik B. & Merényi L. 2000: Origin and environmental significance of clay minerals in the Lower Jurassic formations of the Mecsek Mts. Hungary. Acta Geol. Hung. 43, 405–429.

Razin P., Bonijoly D., Le Strat P., Courel L., Poli E., Dromart G. & Elmi S. 1996: Stratigraphic record of the structural evolution of the western extensional margin of the Subalpine Basin during the Triassic and Jurassic, Ardeche, France. Mar. Petrol. Geol. 13, 625–652.

Rey J. & Delgado A. 2002: Carbon and oxygen isotopes: a tool for Jurassic and early Cretaceous pelagic correlation (southern Spain). Geol. J. 37, 337–345.

Rubio-Cisneros I. & Lawton T.F. 2011: Detrital zircon U–Pb ages of sandstones in continental red beds at Valle de Huizachal, Tamaulipas, NE Mexico: Record of Early-Middle Jurassic arc volcanism and transition to crustal extension. Geosphere 7, 159–170.

Sandberg P.A. 1983: An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature 305, 19–22.

Sandoval J., O’Dogherty L., Aguado R., Bartolini A., Bruchez S. & Bill M. 2008: Aalenian carbon-isotope stratigraphy: Calibration with ammonite, radiolarian and nannofossil events in the Western Tethys. Palaeogeogr. Palaeoclimatol. Palaeoecol. 267, 115–137.

Scholle P.A. & Arthur M.A. 1980: Carbon isotope fluctuations in Cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool. Am. Assoc. Pet. Geol. Bull. 64, 67–87.

Suchéras-Marx B., Guihou A., Giraud F., Lécuyer C., Allemand P., Pittet B. & Mattioli E. 2012: Impact of the Middle Jurassic diversification of Watznaueria (coccolith-bearing algae) on the carbon cycle and δ13C of bulk marine carbonates. Global Planet. Change 86–87, 92–100.

Suchéras-Marx B., Giraud F., Fernandez V., Pittet B., Lecuyer C., Olivero D. & Mattioli E. 2013: Duration of the early Bajocian and the associated δ13C positive excursion based on cyclostratigraphy. J. Geol. Soc. 170, 107–118.

Swart P.K. & Eberli G.P. 2005: The nature of the δ13C of periplatform sediments: Implications for stratigraphy and the global carbon cycle. Sediment. Geol. 175, 115–129.

Tremolada F., Bornemann A., Bralower T.J., Koeberl C. & van de Schootbrugge B. 2006: Paleoceanographic changes across the Jurassic/Cretaceous boundary: The calcareous phytoplankton response. Earth Planet. Sci. Lett. 241, 361–371.

Underhill J.R. & Partington M.A. 1993: Jurassic thermal doming and deflation: the sequence stratigraphic evidence. In: Parker J.R. (Ed.): Petroleum Geology of North-West Europe: Proceedings of the 4th Conference, 337–345.

Velledits F., Híves T. & Bársony E. 1986: A Jurassic-Lower Cretaceous profile in Óbánya valley (Mecsek Mts. Hungary). Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae, Sectio Geologica 26, 159–175.

Weedon G.P. & Jenkyns H.C. 1999: Cyclostratigraphy and the Early Jurassic timescale: data from the Belemnite Marls, Dorset, south England. Geol. Soc. Am. Bull. 111, 1823–1843.

Weissert, H. 1989: C-isotope stratigraphy as monitor of paleoenvironmental changes: A case study from the early Cretaceous. Surveys in Geophysics 10, 1–61.

Weissert H. & Channell, J.E.T., 1989: Tethyan carbonate carbon isotope stratigraphy across the Jurassic-Cretaceous boundary: an indicator of decelerated carbon cycling. Paleoceanography 4, 483–494.

Weissert H. & Mohr H. 1996: Late Jurassic climate and impact on carbon cycling. Palaeogeogr., Palaeoclimatol. Palaeoecol. 122, 27–42.

Wendler J., Gräfe K-U. & Willems H. 2002: Reconstruction of mid-Cenomanian orbitally forced palaeoenvironmental changes based on calcareous dinoflagellate cycts. Palaeogeogr. Palaeoclimatol. Palaeoecol. 179, 19–41.

Wetzel A., Weissert H., Schaub M. & Voegelin A.R. 2013: Sea-water circulation on an oolite-dominated carbonate system in an epeiric sea (Middle Jurassic, Switzerland). Sedimentology 60, 19–35.

Wierzbowski H., Anczkiewicz R., Bazarnik J. & Pawlak J. 2012: Strontium isotope variations in Middle Jurassic (Late Bajocian–Callovian) seawater: Implications for Earth’s tectonic activity and marine environments. Chem. Geol. 334, 171–181.

Wignall P.B. 2001: Large igneous provinces and mass extinctions. Earth-Sci. Rev. 53, 1–33.

Geologica Carpathica

The Journal of Geological Institute of Slovak Academy of Sciences

Journal Information

IMPACT FACTOR 2017: 1.169
5-year IMPACT FACTOR: 1.431

CiteScore 2017: 1.26

SCImago Journal Rank (SJR) 2017: 0.551
Source Normalized Impact per Paper (SNIP) 2017: 0.836


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 192 192 14
PDF Downloads 122 122 7