Tectono-sedimentary analysis using the anisotropy of magnetic susceptibility: a study of the terrestrial and freshwater Neogene of the Orava Basin

Open access


The Orava Basin is an intramontane depression filled with presumably fine-grained sediments deposited in river, floodplain, swamp and lake settings. The basin infilling constitutes a crucial record of the neoalpine evolution of the Inner/Outer Carpathian boundary area since the Neogene, when the Jurassic-Paleogene basement became consolidated, uplifted and eroded. The combination of sedimentological and structural studies with anisotropy of magnetic susceptibility (AMS) measurements provided an effective tool for recognition of terrestrial environments and deformations of the basin infilling. The lithofacies-oriented sampling and statistical approach to the large dataset of AMS specimens were utilized to define 12 AMS facies based on anisotropy degree (P) and shape (T). The AMS facies allowed a distinction of sedimentary facies ambiguous for classical methods, especially floodplain and lacustrine sediments, as well as revealing their various vulnerabilities to tectonic modification of AMS. A spatial analysis of facies showed that tuffites along with lacustrine and swamp deposits were generally restricted to marginal and southern parts of the basin. Significant deformations were noticed at basin margins and within two intrabasinal tectonic zones, which indicated the tectonic activity of the Pieniny Klippen Belt after the Middle Miocene. The large southern area of the basin recorded consistent N-NE trending compression during basin inversion. This regional tectonic rearrangement resulted in a partial removal of the southernmost basin deposits and shaped the basin’s present-day extent.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Aleksandrowski P. 1985: Structure of the Mt. Babia Góra region Magura Nappe Western Outer Carpathians: An interference of West and East Carpathian fold trends. Ann. Soc. Geol. Pol. 55 375-422 (in Polish with English summary).

  • Baas J. H. Hailwood E. A. McCaffrey W. D. Kay M. & Jones R. 2007: Directional petrological characterisation of deep-marine sandstones using grain fabric and permeability anisotropy: methodologies theory application and suggestions for integration. Earth-Sci. Rev. 82 1 101-142.

  • Babinszki E. Márton E. Márton P. & Kiss L. F. 2007: Widespread occurrence of greigite in the sediments of Lake Pannon: Implications for environment and magnetostratigraphy. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252 3 626-636.

  • Bac-Moszaszwili M. 1993: Structure of the western termination of the Tatra massif. Ann. Soc. Geol. Pol. 63 1-3 167-193 (in Polish with English summary).

  • Baumgart-Kotarba M. 1996: On origin and age of the Orava Basin West Carpathians. Stud. Geomorph. Carpatho-Balcanica 30 101-116.

  • Baumgart-Kotarba M. 2001: Continuous tectonic evolution of the Orava basin from Late Badenian to the present-day? Geol. Carpath. 52 103-110.

  • Baumgart-Kotarba M. Michalik M. Paszkowski M. Świerczewska A. Szulc J. & Uchmann A. 1996: Provenance and age of coarse clastic alluvial deposits at Čimhova in the Orava Basin Western Carpathians Slovakia. Pol. Miner. Soc. Spec. Pap. 7 68-72.

  • Baumgart-Kotarba M. Marcak H. Márton E. & Imre G. 2004: Rotation along transverse transforming Orava strike-slip fault in the light of geomorphological geophysical and paleomagnetic data (Western Carpathians). Geol. Carpath. 55 219-226.

  • Beleš F. 1974: Occurrence of bentonite in the Orava river basin. Mineralia Slovaca 6/2 155-157. (in Slovak with English summary).

  • Birkenmajer K. 1954: Geological investigations of Podhale Neogene (Central Carpathians). Bull. Geol. Inst Warsaw 86 59-79 (in Polish with English summary).

  • Birkenmajer K. 1960: Geology of the Pieniny Klippen Belt of Poland. Jahrb. Geol. Bundesanst. 103: 1-36.

  • Birkenmajer K. 1978. Neogene to Early Pleistocene subsidence close to the Pieniny Klippen Belt Polish Carpathians. Stud. Geomorph. Carpatho-Balcanica 12 17-28.

  • Birkenmajer K. & Oszczypko N. 1989: Cretaceous and Palaeogene lithostratigraphic units of the Magura Nappe Krynica Subunit Carpathians. Ann. Soc. Geol. Pol. 59 145-181.

  • Biró T. Karátson D. Márton E. Józsa S. & Bradák B. 2015: Paleoflow directions of a subaqueous lahar deposit around the Miocene Keserűs Hill lava dome complex (North Hungary) as constrained by photo-statistics and anisotropy of magnetic susceptibility (AMS). J. Volcanol. Geotherm. Res. 302 141-149.

  • Bojanowski M. Jaroszewicz E. Košir A. Łoziński M. Marynowski L. Wysocka A. & Derkowski A. 2016: Root-related rhodochrosite and concretionary siderite formation in oxygen-deficient conditions induced by a ground-water table rise. Sedimentology 63 523-551.

  • Cieszkowski M. 1995: Marine Miocene deposits close to Nowy Targ and their importance for determining age of the Orava-Nowy Targ Basin. Kwartalnik AGH Geologia 21 2 153-168 (in Polish with English summary).

  • Cieszkowski M. Oszczypko N. & Zuchiewicz W. 1989: Upper Cretaceous siliciclastic carbonate turbidites at Szczawa Magura Nappe West Carpathians Poland. Bull. Pol. Acad. Sci. Earth Sci. 37 231-245.

  • Copons R. Parés J.M. Dinarès-Turell J. & Bordonau J. 1997: Sampling Induced AMS in Soft Sediments: A Case Study in Holocene Glaciolacustrine Rhythmites from Lake Barrancs (Central Pyrenees Spain). Phys. Chem. Earth 22 1-2 137-141.

  • Crimes T. P. & Oldershaw M. A. 1967: Palaeocurrent determinations by magnetic fabric measurements on the Cambrian rocks of St. Tudwal’s Peninsula North Wales. Geol. J. 5 2 217-232.

  • Dekkers M. J. 1988: Magnetic properties of natural pyrrhotite Part I: Behaviour of initial susceptibility and saturation-magnetizationrelated rock-magnetic parameters in a grain-size dependent framework. Phys. Earth Planet. Inter. 52 3-4 376-393.

  • Dekkers M. J. 1989: Magnetic properties of natural pyrrhotite. II. High-and low-temperature behaviour of Jrs and TRM as function of grain size. Phys. Earth Planet. Inter. 57 3-4 266-283.

  • Ellwood B. B. & Ledbetter M. T. 1977: Antarctic bottom water fluctuations in the Vema Channel: effects of velocity changes on particle alignment and size. Earth Planet. Sci. Lett. 35 2 189-198.

  • Eyles N. Day T. E. & Gavican A. 1987: Depositional controls on the magnetic characteristics of lodgement tills and other glacial diamict facies. Can. J. Earth Sci. 24 12 2436-2458.

  • Garcés M. Parés J.M. & Cabrera L. 1996: Inclination error linked to sedimentary facies in Miocene detrital sequences from the Vallès-Penedès Basin (NE Spain). Geol. Soc. London Spec. Publ. 105 91-99.

  • Garecka M. 2005: Calcareous nannoplankton from the Podhale Flysch (Oligocene-Miocene Inner Carpathians Poland). Stud. Geol. Pol. 124 353-370.

  • Graham J. W. 1954: Magnetic susceptibility anisotropy an unexploited petrofabric element. Geol. Soc. Am. Bull. 65 12 1257-1258.

  • Gravenor C. P. & Wong T. 1987: Magnetic and pebble fabrics and origin of the Sunnybrook Till Scarborough Ontario Canada. Can. J. Earth Sci. 24 10 2038-2046.

  • Gross P. Filo I. Halouzka R. Haško J. Havrila M. Kováč P. Maglay J. Mello J. & Nagy A. 1993a: Geological map of southern and eastern part of Orava. State Geol. Inst. of Dionýz Štúr Bratislava.

  • Gross P. Köhler E. Haško J. Halouzka R. Mello J. & Nagy A. 1993b: Geology of southern and eastern Orava. State Geol. Inst. of Dionýz Štúr Bratislava 1-319 (in Slovak).

  • Hamilton N. 1967: The effect of magnetic and hydrodynamic control on the susceptibility anisotropy of redeposited silt. J. Geol. 75 6 738-743.

  • Hrouda F. 1982: Magnetic anisotropy of rocks and its application in geology and geophysics. Geophysical Surveys 5 37-82.

  • Hrouda F. 2010: Modelling relationship between bulk susceptibility and AMS in rocks consisting of two magnetic fractions represented by ferromagnetic and paramagnetic minerals - Implications for understanding magnetic fabrics in deformed rocks. J. Geol. Soc. India 75 1 254-266.

  • Hrouda F. & Potfaj M. 1993: Deformation of sediments in the post-orogenic Intra-Carpathian Paleogene Basin as indicated by magnetic anisotropy. Tectonophysics 224 4 425-434.

  • Hrouda F. Jelínek V. & Zapletal K. 1997: Refined technique for susceptibility resolution into ferromagnetic and paramagnetic components based on susceptibility temperature-variation measurement. Geophys. J. Int. 129 3 715-719.

  • Hrouda F. Krejčí O. Potfaj M. & Stráník Z. 2009: Magnetic fabric and weak deformation in sandstones of accretionary prisms of the Flysch and Klippen Belts of the Western Carpathians: Mostly offscraping indicated. Tectonophysics 479 3 254-270.

  • Jankowski L. & Margielewski W. 2014: Structural control on the Outer Carpathians relief - a new approach. Przegl. Geol. 62 1 29-35 (in Polish with English summary).

  • Jarosiński M. 1998: Contemporary stress field distortion in the Polish part of the Western Outer Carpathians and their basement. Tectonophysics 297 1 91-119.

  • Jelínek V. 1977: The statistical theory of measuring anisotropy of magnetic susceptibility of rocks and its application. Geofyzika Brno 1-88.

  • Jelínek V. & Kropáček V. 1978: Statistical processing of anisotropy of magnetic susceptibility measured on groups of specimens. Studia Geophys. Geod. 22 50-62.

  • Joseph L. H. Rea D. K. & van der Pluijm B. A. 1998: Use of grain size and magnetic fabric analyses to distinguish among depositional environments. Paleoceanography 13 5 491-501.

  • Kanamatsu T. & Herrero-Bervera E. 2006: Anisotropy of magnetic susceptibility and paleomagnetic studies in relation to the tectonic evolution of the Miocene-Pleistocene accretionary sequence in the Boso and Miura Peninsulas central Japan. Tectonophysics 418 1 131-144.

  • Klappa C. F. 1980: Rhizoliths in terrestrial carbonates: classification recognition genesis and significance. Sedimentology 27 613-629.

  • Kołcon I. & Wagner M. 1991: Brown coal from Neogene sediments of the Orawa-Nowy Targ basin - petrological study. Geol. Quarterly 35 3 305-322 (in Polish with English summary).

  • Kováč M. Nagymarosy A. Soták J. & Šutovská K. 1993: Late Tertiary paleogeographic evolution of Western Carpathians. Tectonophysics 226 401-415.

  • Kováč M. Hók J. Minár J. Vojtko R. Bielik M. Pipík R. Rakús M. Kráľ J. Šujan M. & Králiková S. 2011: Neogene and Quaternary development of the Turiec Basin and landscape in its catchment: a tentative mass balance model. Geol. Carpath. 62 4 361-379.

  • Kukulak J. 1998: Sedimentary characteristics of the topmost deposits Domański Wierch alluvial cone (Neogene/Pleistocene) Orava Depression Polish Carpathians. Stud. Geol. Pol. 111 93-111 (in Polish with English summary).

  • Kukulak J. 1999: Orientation of joints and faults in the SE part of the Orawa Depression. Przegl. Geol. 47 11 1021-1026 (in Polish with English summary).

  • Lowrie W. 1990: Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophys. Res. Lett. 17 159-162.

  • Łoziński M. Wysocka A. & Ludwiniak M. 2015: Neogene terrestrial sedimentary environments of the Orava-Nowy Targ Basin: a case study of the Oravica River section near Čimhová Slovakia. Geol. Quarterly 59 1 21-34.

  • Łoziński M. Ziółkowski P. & Wysocka A. 2016: Lithofacies and terrestrial sedimentary environments in AMS measurements: case study from Neogene of Oravica River section Čimhová Slovakia. Geol. Quarterly 60 2 259-272.

  • Łój M. Madej J. Porzucek S. & Zuchiewicz W. 2007: Young tectonics of the Orava Basin and southern portion of the Magura Nappe Polish western Carpathians in the light of gravity studies: a new research proposal. Studia Quaternaria 24 53-60.

  • Malata E. Malata T. & Oszczypko N. 1996: Litho- and biostratigraphy of the Magura Nappe in the eastern part of the Beskid Wyspowy Range (Polish Western Carpathians). Ann. Soc. Geol. Pol. 66 269-283.

  • Márton E. Rauch-Włodarska M. Krejčí O. Tokarski A. K. & Bubík M. 2009: An integrated palaeomagnetic and AMS study of the Tertiary flysch from the Outer Western Carpathians. Geophys. J. Int. 177 3 925-940.

  • Mattei M. Sagnotti L. Faccenna C. & Funiciello R. 1997: Magnetic fabric of weakly deformed clay-rich sediments in the Italian peninsula: relationship with compressional and extensional tectonics. Tectonophysics 271 1 107-122.

  • Mazzoli S. Szaniawski R. Mittiga F. Ascione A. & Capalbo A. 2012: Tectonic evolution of Pliocene-Pleistocene wedge-top basins of the southern Apennines: new constraints from magnetic fabric analysis. Canadian Journal of Earth Sciences 49 3 492-509.

  • Miall A.D. 2000: Principles of Sedimentary Basin Analysis. Springer- Verlag Berlin-Heidelberg-New York 1-616.

  • Miall A.D. 2006: The Geology of Fluvial Deposits: Sedimentary Facies Basin Analysis and Petroleum Geology. Springer Berlin 1-582.

  • Nagy A. Vass D. Petrik F. & Pereszlényi M. 1996: Tectogenesis of the Orava Depression in the light of latest biostratigraphic investigations and organic matter alteration studies. Slovak Geol. Mag. 1 49-58.

  • Novak B. Housen B. Kitamura Y. Kanamatsu T. & Kawamura K. 2014: Magnetic fabric analyses as a method for determining sediment transport and deposition in deep sea sediments. Mar. Geol. 356 19-30.

  • Olszewska B. & Wieczorek J. 1998: The Paleogene of the Podhale Basin (Polish Inner Carpathians) - micropaleontological perspective. Przegl. Geol. 46 8/2 721-728 (in Polish with English summary).

  • Ort M.H. Newkirk T.T. Vilas J.F. & Vazquez J.A. 2015: Towards the definition of AMS facies in the deposits of pyroclastic density currents. Geol. Soc. London Spec. Publ. 396 205-226.

  • Oszast J. & Stuchlik L. 1977: The Neogene vegetation of the Podhale (West Carpathians Poland). Acta Palaeobotanica 18 45-86 (in Polish with English summary).

  • Parés J.M. 2015: Sixty years of anisotropy of magnetic susceptibility in deformed sedimentary rocks. Frontiers in Earth Science 3 4 1-12.

  • Parés J.M. van der Pluijm B. A. & Dinarès-Turell J. 1999: Evolution of magnetic fabrics during incipient deformation of mudrocks (Pyrenees northern Spain). Tectonophysics 307 1-14.

  • Parés J. M. Hassold N. J. C. Rea D. K. & van der Pluijm B. A. 2007: Paleocurrent directions from paleomagnetic reorientation of magnetic fabrics in deep-sea sediments at the Antarctic Peninsula Pacific margin (ODP Sites 1095 1101). Ma. Geo. 242 4 261-269.

  • Park C. K. Doh S. J. Suk D. W. & Kim K. H. 2000: Sedimentary fabric on deep-sea sediments from KODOS area in the eastern Pacific. Mar. Geol. 171 1 115-126.

  • Park M. E. Cho H. Son M. & Sohn Y. K. 2013: Depositional processes paleoflow patterns and evolution of a Miocene gravelly fan-delta system in SE Korea constrained by anisotropy of magnetic susceptibility analysis of interbedded mudrocks. Mar. Petrol. Geol. 48 206-223.

  • Pešková I. Vojtko R. Starek D. & Sliva Ľ. 2009: Late Eocene to Quaternary deformation and stress field evolution of the Orava region (Western Carpathians). Acta Geol. Pol. 59 1 73-91.

  • Polášek S. 1959: Coal deposits of the Neogene Orava Basin. Open file report State Geol. Inst. of Dionýz Štúr Bratislava (in Slovak).

  • Pomianowski P. 2003: Tectonics of the Orava-Nowy Targ Basin - results of the combined analysis of the gravity and geoelectrical data. Przegl. Geol. 51 6 498-506 (in Polish with English summary).

  • Pospíšil L. 1990: The present possibilities of identification of shear zones in the area of the West Carpathians. Mineralia Slovaca 22 19-31 (in Slovak with English summary).

  • Pulec M. 1976: Final report from the drillhole OH-1 (Hladovka - Orava Basin). Open file report State Geol. Inst. of Dionýz Štúr Bratislava (in Slovak).

  • R Core Team 2015: R: A language and environment for statistical computing. R Foundation for Statistical Computing Vienna Austria www.r-project.org.

  • Rees A. I. 1961: The effect of water currents on the magnetic remanence and anisotropy of susceptibility of some sediments. Geophys. J. Int. 5 3 235-251.

  • Rees A. I. 1965: The Use of Anisotropy of Magnetic Susceptibility in the Estimation of Sedimentary Fabric. Sedimentology 4 4 257-271.

  • Rees A.I. & Woodall W.A. 1975: The magnetic fabric of some laboratory- deposited sediments. Earth Planet. Sci. Lett. 25 2 121-130.

  • Reinholdsson M. Snowball I. Zillén L. Lenz C. & Conley D. J. 2013: Magnetic enhancement of Baltic Sea sapropels by greigite magnetofossils. Earth Planet. Sci. Lett. 366 137-150.

  • Roberts A. P. Chang L. Rowan C. J. Horng C. S. & Florindo F. 2011: Magnetic properties of sedimentary greigite (Fe3S4): An update. Rev. Geophys. 49 1 1-46.

  • Shimono T. Yamazaki T. & Inoue S. 2014: Influence of sampling on magnetic susceptibility anisotropy of soft sediments: comparison between gravity and piston cores. Earth Planets and Space 66 3 doi:

    • Crossref
    • Export Citation
  • Shor A. N. Kent D. V. & Flood R. D. 1984: Contourite or turbidite?: Magnetic fabric of fine-grained Quaternary sediments Nova Scotia continental rise. Geol. Soc. London Spec. Publ. 15 1 257-273.

  • Sikora W. & Wieser T. 1974: Pyroclastic deposits in the Neogene of intramontane Orava-Nowy Targ Basin. Geol. Quarterly 18 2 441-443 (in Polish).

  • Soták J. 1998a: Sequence stratigraphy approach to the Central Carpathian Paleogene (Eastern Slovakia): eustasy and tectonics as controls of deep sea fan deposition. Slovak Geol. Mag. 4 185-190.

  • Soták J. 1998b: Central Carpathian Paleogene and its constrains. Slovak Geol. Mag. 4 203-211.

  • Struska M. 2008: Neogene-Quaternary structural development of the Orava Basin on the basis of geological geomorphological and remote sensing investigations. PhD thesis AGH University of Science and Technology Cracow (in Polish).

  • Śmigielski M. Sinclair H.D. Stuart F.M. Persano C. & Krzywiec P. 2016: Exhumation history of the Tatry Mountains Western Carpathians constrained by low-temperature thermochronology. Tectonics 35 1 187-207.

  • Tamaki M. Suzuki K. & Fujii T. 2015: Paleocurrent analysis of Pleistocene turbidite sediments in the forearc basin inferred from anisotropy of magnetic susceptibility and paleomagnetic data at the gas hydrate production test site in the eastern Nankai Trough. Mar. Petrol. Geol. 66 404-417.

  • Tarling D. H. & Hrouda F. 1993: The magnetic anisotropy of rocks. Chapman & Hall London 1-217.

  • Tokarski A.K. & Zuchiewicz W. 1998: Fractured clasts in the Domański Wierch series: Contribution to structural evolution of the Orava Basin (Carpathians Poland) during Neogene through Quaternary times. Przegl. Geol. 46 1 62-66 (in Polish with English summary).

  • Tokarski A.K. Świerczewska A. Zuchiewicz W. Starek D. & Fodor L. 2012: Quaternary exhumation of the Carpathians: a record from the Orava-Nowy Targ Intramontane Basin Western Carpathians (Poland and Slovakia). Geol. Carpath. 63 257-266.

  • Tokarski A.K. Márton E. Świerczewska A. Fheed A. Zasadni J. & Kukulak J. 2016: Neotectonic rotations in the Orava-Nowy Targ Intramontane Basin (Western Carpathians): An integrated palaeomagnetic and fractured clasts study. Tectonophysics 685 35-43.

  • Vass D. Kováč M. Konečný V. & Lexa J. 1988: Molasse basins and volcanic activity in West Carpathian Neogene-its evolution and geodynamic character. Geol. Carpath. 39 539-562.

  • von Rad U. 1970: Comparison between “magnetic” and sedimentary fabric in graded and cross-laminated sand layers southern California. Geol. Rundsch. 60 1 331-354.

  • Watycha L. 1971: Drillholes Czarny Dunajec IG-1 and Koniówka IG-1. Open file report Polish Geol. Inst. Warsaw (in Polish).

  • Watycha L. 1976a: The Neogene of the Orawa-Nowy Targ Basin. Geol. Quarterly 20 3 575-585 (in Polish with English summary).

  • Watycha L. 1976b: Detailed Geological Map of Poland 1:50000. Sheet Czarny Dunajec (1048). Polish Geol. Inst. Warsaw (in Polish).

  • Watycha L. 1977a: Explanations to the Detailed Geological Map of Poland 1:50000. Sheet Czarny Dunajec (1048). Polish Geol. Inst. Warsaw 1-102 (in Polish).

  • Watycha L. 1977b: Explanations to the Detailed Geological Map of Poland 1:50000. Sheet Jabłonka (1047). Polish Geol. Inst. Warsaw 1-72 (in Polish).

  • Watycha L. 1977c: Detailed Geological Map of Poland 1:50000. Sheet Jabłonka (1047). Polish Geol. Inst. Warsaw (in Polish).

  • Wetzel A. & Einsele G. 1991: On the physical weathering of various mudrocks. Bulletin of the International Association of Engineering Geology 44 89-100.

  • Wiewióra A. & Wyrwicki R. 1980: Clay minerals of the Neogene sediments in the Orava-Nowy Targ basin. Geol. Quarterly 24 2 333-348 (in Polish with English summary).

  • Woźny E. 1976: Stratigraphy of the Younger Tertiary in the Orawa- Nowy Targ Basin on the basis of fresh-water and continental macrofauna. Geol. Quarterly 20 3 589-595 (in Polish with English summary).

  • Zachos J. Pagani M. Sloan L. Thomas E. & Billups K. 2001: Trends Rhythms and Aberrations in Global Climate 65 Ma to Present. Science 292 686-693.

  • Zuchiewicz W. Tokarski A. K. Jarosiński M. & Márton E. 2002: Late Miocene to present day structural development of the Polish segment of the Outer Carpathians. EGU Stephen Mueller Spec. Publ. Series 3 185-202.

Journal information
Impact Factor

IMPACT FACTOR 2018: 1.699
5-year IMPACT FACTOR: 1.676

CiteScore 2018: 1.76

SCImago Journal Rank (SJR) 2018: 0.627
Source Normalized Impact per Paper (SNIP) 2018: 1.203

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 231 102 3
PDF Downloads 230 130 2