Geochemistry, environmental and provenance study of the Middle Miocene Leitha limestones (Central Paratethys)

Open access

Abstract

Mineralogical, major, minor, REE and trace element analyses of rock samples were performed on Middle Miocene limestones (Leitha limestones, Badenian) collected from four localities from Austria (Mannersdorf, Wöllersdorf, Kummer and Rosenberg quarries) and the Fertőrákos quarry in Hungary. Impure to pure limestones (i.e. limited by Al2O3 contents above or below 0.43 wt. %) were tested to evaluate the applicability of various geochemical proxies and indices in regard to provenance and palaeoenvironmental interpretations. Pure and impure limestones from Mannersdorf and Wöllersdorf (southern Vienna Basin) show signs of detrital input (REEs = 27.6 ± 9.8 ppm, Ce anomaly = 0.95 ± 0.1 and the presence of quartz, muscovite and clay minerals in impure limestones) and diagenetic influence (low contents of, e.g., Sr = 221 ± 49 ppm, Na is not detected, Ba = 15.6 ± 8.8 ppm in pure limestones). Thus, in both limestones the reconstruction of original sedimentary palaeoenvironments by geochemistry is hampered. The Kummer and Fertőrákos (Eisenstadt–Sopron Basin) comprise pure limestones (e.g., averages Sr = 571 ± 139 ppm, Na = 213 ± 56 ppm, Ba = 21 ± 4 ppm, REEs = 16 ± 3 ppm and Ce anomaly = 0.62 ± 0.05 and composed predominantly of calcite) exhibiting negligible diagenesis. Deposition under a shallow-water, well oxygenated to intermittent dysoxic marine environment can be reconstructed. Pure to impure limestones at Rosenberg–Retznei (Styrian Basin) are affected to some extent by detrital input and volcano-siliciclastic admixture. The Leitha limestones at Rosenberg have the least diagenetic influence among the studied localities (i.e. averages Sr = 1271 ± 261 ppm, Na = 315 ± 195 ppm, Ba = 32 ± 15 ppm, REEs = 9.8 ± 4.2 ppm and Ce anomaly = 0.77 ± 0.1 and consist of calcite, minor dolomite and quartz). The siliciclastic sources are characterized by immobile elemental ratios (i.e. La/Sc and Th/Co) which apply not only for the siliciclastics, but also for marls and impure limestones. At Mannersdorf the detrital input source varies between intermediate to silicic igneous rocks, while in Kummer and Rosenberg the source is solely silicic igneous rocks. The Chemical Index of Alteration (CIA) is only applicable in the shale-contaminated impure limestones. CIA values of the Leitha limestones from Mannersdorf indicate a gradual transition from warm to temperate palaeoclimate within the limestone succession of the Badenian.

Ali Sh. & Ntaflos Th. 2013: Petrogenesis and mantle source characteristics of Quaternary alkaline mafic lavas in the western Carpathian–Pannonian Region, Styria, Austria. Chem. Geol. 337–338, 99–113.

Anderson P.E., Benton M.J., Trueman C.N., Paterson B.A. & Cuny G. 2007: Palaeoenvironments of vertebrates on the southern shore of Tethys: the nonmarine early cretaceous of Tunisia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 243, 118–131.

Ando A., Kawahata H. & Kakegawa T. 2006: Sr/Ca ratios as indicators of varying modes of pelagic carbonate diagenesis in the ooze, chalk and limestone realms. Sediment. Geol. 191, 37–53.

Arndt S., Jørgensen B.B., LaRowe D.E., Middelburg J.J., Pancost R.D. & Regnier P. 2013: Quantifying the degradation of organic matter in marine sediments: A review and synthesis. Earth Sci. Rev. 123, 53–86.

Azmy K., Brand U., Sylvester P., Gleeson S.A., Logan A. & Bitner M.A. 2011: Biogenic and abiogenic low-Mg calcite (bLMC and aLMC): evaluation of seawater-REE composition, water masses and carbonate diagenesis. Chem. Geol. 280, 180–190.

Baker P.A. & Bloomer S.H. 1988: The origin of celestite in deep-sea carbonate sediments. Geochim. Cosmochim. Acta 52, 335–340.

Balogh K., Ebner F., Ravasz C., Herrmann P., Lobitzer H. & Solti G. 1994: K/Ar-Alter tertiärer Vulkanite der südöstlichen Steiermark und des südlichen Burgenlandes. In: Lobitzer H., Császár G. & Daurer A. (Eds.): Jubiläumsschrift 20 Jahre Geologische Zusammenarbeit Österreich–Ungarn. Geol. Bundesanst. Vienna, 55–72.

Bau M. 1991: Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chem. Geol. 93, 3, 219–230.

Bau M. & Dulski P. 1999: Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chem. Geol. 155, 1, 77–90.

Bau M. & Möller P. 1992. Rare earth element fractionation in meta-morphogenic hydrothermal calcite, magnesite and siderite. Mineral. Petrol. 45, 3–4, 231–246.

Bau M., Dulski P. & Möller P. 1995: Yttrium and holmium in South Pacific seawater: vertical distribution and possible fractionation mechanisms. Chem. Erde 55, l–15.

Bau M., Möller P. & Dulski P. 1997: Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling. Mar. Chem. 56, 123–131.

Bau M., Balan S., Schmidt K. & Koschinsky A. 2010: Rare earth elements in mussel shells of the Mytilidae family as tracers for hidden and fossil high-temperature hydrothermal systems. Earth Planet. Sci. Lett. 299, 310–316.

Bojar A-V., Hiden H., Fenninger A. & Neubauer F. 2004: Middle Miocene seasonal temperature changes in the Styrian basin, Austria, as recorded by the isotopic composition of pectinid and brachiopod shells. Palaeogeogr. Palaeoclimatol. Palaeoecol. 203, 95–105.

Boswell S.M. & Elderfield H. 1988: The determination of zirconium and hafnium in natural waters by isotope dilution mass spectrometry. Mar. Chem. 25, 197–210.

Brand U. & Veizer J. 1980: Chemical diagenesis of a multicomponent carbonate system-1: trace elements. J. Sediment. Petrol. 50, 1219–1236.

Calvert S.E., Burtin R.M. & Ingall E.D. 1996: Influence of water column anoxia and sediment supply on the burial and preservation of organic carbon in marine shales. Geochim. Cosmochim. Acta 60, 1577–1593.

Campbell A.C., Palmer M.R., Klinkhammer G.P., Bowers T.S., Edmond J.M., Lawrence J.R., Casey J.F., Thompson G., Humphris S., Rona R. & Karson J.A. 1988: Chemistry of hot springs on the Mid-Atlantic Ridge. Nature (London) 335, 514-519.

Chittleborough D.J. 1991: Indices of weathering for soils and palaeosols formed on silicate rocks. Austr. J. Earth Sci. 38, 115–120.

Craddock P.R., Bach W., Seewald J.S., Rouxel O.J., Reeves E. & Tivey M.K. 2010: Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea: indicators of sub-seafloor hydrothermal processes in back-arc basins. Geochim. Cosmochim. Acta 74, 5494–5513.

Cullers R.L. 1988: Mineralogical and chemical changes of soil and stream sediment formed by intense weathering of the Danberg granite, Georgia, USA. Lithos 21, 301–314.

Cullers R.L. 1994: The controls on the major and trace element variation of shales, siltstones and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochim. Cosmochim. Acta 58, 4955–4972.

Cullers R.L. 2000: The geochemistry of shales, siltstones and sandstones of Penn- sylvanianePermian age, Colorado, U.S.A.: implications for provenance and metamorphic studies. Lithos 51, 305–327.

Cullers R.L. 2002: Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chem. Geol. 191, 305–327.

Cullers R.L. & Podkovyrov V.N. 2000: Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling. Precambrian Res. 104, 77–93.

Cullers R.L., Basu A. & Suttner L. 1988: Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, USA. Chem. Geol. 70, 335–348.

de Baar H.J.W., Bacon M.P. & Brewer P.G. 1983: Rare-earth distributions with a positive Ce anomaly in the western North Atlantic Ocean. Nature 301, 324–327.

de Baar H.J.W., Bacon M.P., Brewer P.G. & Bruland K.W. 1985: Rare earth elements in the Pacific and Atlantic Oceans. Geochim. Cosmochim. Acta 49, 1943–1959.

Dubinin A.V. 2004: Geochemistry of rare earth elements in the ocean. Lithol. Min. Resour. 39, 289–307.

Dullo W.C. 1983: Fossildiagenese im miozänen Leitha-Kalk der Paratethys von Österreich: Ein Beispiel für Faunenverschiebung durch Diageneseunterschiede. Facies 8, 1–112.

Ebner F. & Sachsenhofer R.F. 1995: Palaeogeography, subsidence and thermal history of the Neogene Styrian basin (Pannonian basin system, Austria). Tectonophysics 242, 133–150.

Elderfield H. 1988: The oceanic chemistry of the rare-earth elements. Philos. Trans. R. Soc. London,325, 105–126.

Elderfield H. & Greaves M.J. 1982: The rare earth elements in sea-water. Nature 296, 214–219.

Fenninger A. & Hubmann B. 1997: Palichnologie an der Karpatium/Badenium-Grenze des Steirischen Tertiärbeckens (Österreich). Geol.-Paläontol. Mitt. Innsbruck, 22, 71–83.

Haley B.A., Klinkhammer G.P. & McManus J. 2004: Rare earth elements in pore waters of marine sediments. Geochim. Cosmochim. Acta 68, 1265–1279.

Garbelli C., Angiolini L., Brand U., Shen S.Z., Jadoul F., Posenato R., Azmy K. & Cao C.Q. 2016: Neotethys seawater chemistry and temperature at the dawn of the end Permian mass extinction. Gondwana Res. 35, 272–285.

Handler R., Ebner F., Neubauer F., Hermann S., Bojar A.-V., Hermann S. 2006. 40Ar/39Ar dating of Miocene tuffs from Styrian part of the Pannonian Basin: an attempt to refine the basin stratigraphy. Geol. Carpath. 57, 483–494.

Haq B.U., Hardenbol J. & Vail P.R. 1987: Chronology of fluctuating sea levels since the Triassic. Science 235, 1156–1166.

Harangi S., Downes H. & Seghedi I. 2006: Tertiary-Quaternary subduction processes and related magmatism in the Alpine-Mediterranean region. In: Gee D.G. & Stephenson R.A. (Eds.): European Lithosphere Dynamics. Geol. Soc. London Memoir 32, 167–190.

Harnois L. 1988: The CIW index: a new chemical index of weathering. Sediment. Geol. 55, 319–322.

Harzhauser M. & Piller W.E. 2010: Molluscs as a major part of subtropical shallow-water carbonate production-an example from a Middle Miocene oolite shoal (Upper Serravallian, Austria). Spec. Publ. Int. Ass. Sed. 42, 185–200.

Hedberg H.D. 1976: International Stratigraphic Guide. John Wiley, New York, 1–200.

Hinkley T.K. & Tatsumoto M. 1987: Metals and isotopes in Juan de Fuca Ridge hydrothermal fluids and their associated solid materials. J. Geophys. Res. 92, 1943–1959.

Hohenegger J. & Wagreich M. 2012: Time calibration of sedimentary sections based on isolation cycles using combined cross-correlation: dating the gone Badenian stratotype (Middle Miocene, Paratethys, Vienna Basin, Austria) as an example. Int. J. Earth Sci. (Geol. Rundsch.) 101, 339–349.

Hohenegger J., Ćorić S., Khatun M., Pervesler P., Rögl F., Rupp C., Selge A., Uchman A. & Wagreich M. 2009: Cyclostratigraphic dating in the Lower Badenian (Middle Miocene) of the Vienna Basin (Austria): the Baden-Sooss core: Int. J. Earth Sci. (Geol. Rundsch.) 98, 915–930.

Hohenegger J., Ćorić S. & Wagreich M. 2014: Timing of the Middle Miocene Badenian Stage of the Central Paratethys. Geol. Carpath. 65, 1, 55–66.

Hongo Y. & Nozaki Y. 2001: Rare earth element geochemistry of hydrothermal deposits and Calyptogena shell from the Iheya Ridge vent field, Okinawa Trough. Geochem. J. 35, 5, 347–354.

Ivanov D., Ashraf A.R., Mosbrugger V. & Palamarev E. 2002: Palynological evidence for Miocene climate change in the Forecarpathian Basin (Central Paratethys NW Bulgaria). Palaeogeogr. Palaeoclimatol. Palaeoecol. 178, 19–37.

Johannesson K.H., Telfeyan K., Chevis D.A., Rosenheim B.E. & Leybourne M.I. 2014: Rare earth elements in stromatolites-1. Evidence that modern terrestrial stromatolites fractionate rare earth elements during incorporation from ambient waters. In: Evolution of Archean Crust and Early Life. Springer Netherlands, 385–411.

Kim J.H., Torres M.E., Haley B.A., Kastner M., Pohlman J.W., Riedel M. & Lee Y.J. 2012: The effect of diagenesis and fluid migration on rare earth element distribution in pore fluids of the northern Cascadia accretionary margin. Chem. Geol. 291, 152–165.

Kocsis L., Trueman C.N. & Palmer M.R. 2010: Protracted diagenetic alteration of REE contents in fossil bioapatites: direct evidence from Lu–Hf isotope systematics. Geochim. Cosmochim. Acta 74, 21, 6077–6092.

Kováč M., Andreyeva-Grigorovich A., Bajraktarević Z., Brzobohatý R., Filipescu S., Fodor L., Harzhauser M., Nagymarosy A., Oszczypko N., Pavelić D., Rögl F., Saftić, B., Sliva L. & Studencka B. 2007: Badenian evolution of the Central Paratethys Sea: paleogeography, climate and eustatic sea level changes. Geol. Carpath. 58, 579–606.

Kováčová P., Emmanuel L., Hudáčkova N. & Renard N. 2009: Central Paratethys paleoenvironment during the Badenian (Middle Miocene): evidence from foraminifera and stable isotope (∂13C and ∂18O) study in the Vienna Basin (Slovakia). Int. J. Earth Sci. (Geol. Rundsch.) 98, 1109–1127.

Kröll A. 1988: Reliefkarte des prätertiären/Untergrundes. In: Kröll A., Flügel H.W., Seiberl W., Weber F., Walach G. & Zych D. (Eds.): Erläuterungen zu den Karten über den prätertiären Untergrund des Steirischen Beckens und der Südburgenländischen Schwelle. Geologische Bundesanstalt, Vienna, 16–20.

Kulp J.L., Turckian K. & Boyd D.W. 1952: Sr content of limestones and fossils. Geol. Soc. Am. Bull. 63, 701–716.

Land L.S. & Hoops G.K. 1973: Sodium in carbonate sediments and rocks: a possible index to the salinity of diagenetic solutions. J. Sediment. Petrol. 43, 614–617.

Lankreijer A., Kováč M., Cloetingh S., Pitoňák P., Hlôška M. & Biermann C. 1995: Quantitative subsidence analysis and forward modelling of the Vienna and Danube basins: thin-skinned versus thick skinned extension. Tectonophysics 252, 433–451.

Laskarev V.N. 1924: Sur les equivalentes du Sarmatien supérieur en Serbie. Recueil de traveaux ofert a M. Jovan Cvijic par ses amis et collaborateurs, 73–85.

Lee E.Y. & Wagreich M. 2017: Polyphase tectonic subsidence evolution of the Vienna Basin inferred from quantitative subsidence analysis of the northern and central parts. Int. J. Earth Sci. 106, 687–705.

Madhavaraju J., González-León C.M., Lee Yong Il., Armstrong-Altrin J.S. & Reyes-Campero L.M. 2010: Geochemistry of the Mural Formation (Aptian–Albian) of the Bisbee Group, Northern Sonora, Mexico. Cretaceous Res. 31, 400–414.

McLennan S.M., Taylor S.R. & Eriksson K.A. 1983: Geochemistry of Archean shales from the Pilbara Supergroup, Western Australia. Geochim. Cosmochim. Acta 47, 1211–1222.

McLennan S.M., Taylor S.R., McCulloch M.T. & Maynard J.B. 1990: Geochemistry and Nd-Sr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations. Geochim. Cosmochim. Acta 54, 2014–2050.

McLennan S.M., Hemming S., McDaniel D.K. & Hanson G.M. 1993: Geochemical approaches to sedimentation, provenance, and tectonics. In: Johnsson M.J. & Basu A. (Eds.): Processes Controlling the Composition of Clastic Sediments. Geol. Soc. Am., Spec. Pap. 284, 21–40.

Michard A., Albarède F., Michard G., Minster J.F. & Charlou J.L. 1983: Rare earth elements and uranium in high-temperature solutions from East Pacific Rise hydrolhermal vent field (13º N). Nature (London), 303, 795–797.

Mielke J.E. 1979: Composition of the Earth’s crust and distribution of the elements. In: Siegel F.R. (Ed.), Review of Research on Modern Problems in Geochemistry. UNESCO Report, Paris, 13–37.

Morrison J.O. & Brand U. 1986: Geochemistry of recent marine invertebrates. Geoscience Canada, 13, 237–254.

Morse J.W. & Mackenzie F.T. 1990: Geochemistry of Sedimentary Carbonates. Elsevier, Amsterdam, 1–707.

Nesbitt H.W. & Young G.M. 1982: Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–717.

Neuhuber S., Gier S., Hohenegger J., Wolfgring E., Spötl C., Strauss P. & Wagreich M. 2016: Palaeoenvironmental changes in the northwestern Tethys during the Late Campanian Radotruncana calcarata Zone: Implications from stable isotopes and geochemistry. Chem. Geol. 420, 280–296.

Nothdurft L.D., Webb G.E. & Kamber B.S. 2004: Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: confirmation of seawater REE proxy in ancient limestones. Geochim. Cosmochim. Acta 68, 263–283.

Nozaki Y. 2001: Rare earth elements and their isotopes. Encycl. Ocean Sci. 4, 2354–2366.

Nozaki Y., Zhang J. & Amakawa H 1997: The fractionation between Y and Ho in the marine environment. Earth Planet. Sci. Lett. 148, 329–340.

Olivarez A.M. & Owen R.M. 1991: The europium anomaly of sweater: implications for fluvial versus hydrothermal REE inputs to the oceans. Chem. Geol. 92, 317–328.

Papp A., Cicha I., Senes J. & Steininger F. 1978: M4-Badenien (Moravien, Wielicien, Kosovien). Chronostratigraphie und Neostratotypen. Miozän der Zentralen Paratethys. Slowakische Akademie der Wissenschaften, Bratislava, 1–594.

Piepgras D.J. & Jacobsen S.B. 1992: The behavior of rare earth elements in seawater: Precise determination of variations in the North Pacific water column. Geochim. Cosmochim. Acta 56, 1851–1862.

Piller W.E. & Kleemann K. 1991: Middle Miocene Reefs and related facies in eastern Austria. 1) Vienna Basin: VI International Symposium on Fossil Cnidaria including Archaeocyatha and Porifera. Excursion Guidebook, Excursion B4, 1–28.

Piller W.E., Decker K. & Haas M 1996: Sedimentologie und Beckendynamik des Wiener Beckens: Sediment 96, 11. Sedimentologentreffen, Exkursion guide, Geol. Bundesanst., Wien, 1–41.

Piller W.E., Summesberger H., Draxler I., Harzhauser M. & Mandic O. 1997: Meso- to Cenozoic tropical/subtropical climates — Selected examples from the Northern Calcareous Alps and the Vienna Basin. In: Kollmann H.A. & Hubmann B. (Eds.) Excursion Guides, Second European Paleontological Congress, Climates: Past, Present and Future, Wien, 70–111.

Piller W.E., Harzhauser M. & Mandic O. 2007: Miocene Central Paratethys stratigraphy-current status and future directions. Stratigraphy 4, 151–168.

Piper D.Z. 1974: Rare earth elements in the sedimentary cycle: a summary. Chem. Geol. 14, 285–304.

Reuter M., Piller W.E. & Erhart C. 2012: A Middle Miocene carbonate platform under silici-volcaniclastic sedimentation stress (Leitha Limestone, Styrian Basin, Austria)-Depositional environments, sedimentary evolution and palaeoecology: Paleogeogr. Paleoclimatol. Paleoecol. 350–352, 198–211.

Riegl B. & Piller W.E. 2000: Biostromal coral facies - a Miocene example from the Leitha Limestone (Austria) and its actualistic interpretation. Palaios 15, 399–413.

Rohatsch A. 2005: Neogene Bau- und Dekorgesteine Niederösterreichs und des Burgenlandes. Mitteilungen IAG BOKU, 9–56.

Rostá E. 1993: Gilbert-type delta in the Sarmatian-Pannonian sediments, Sopron, NW Hungary. Földtani Közlöny 123, 2, 167–193.

Royden L.H. 1985: The Vienna Basin: a thin-skinned pull-apart basin. In: Biddle K.T. & Christie-Blick N. (Eds) Strike-Slip deformation, basin formation, and sedimentation. SEPM Spec. Publ. 37, 319–338

Salvador A. 1994: International stratigraphic guide. International Union of Geological Sciences and The Geological Society of America, 1–214.

Schieber J. 2011: Marcasite in black shales- a mineral proxy for oxygenated bottom waters and intermittent oxidation of carbonaceous muds. J. Sediment. Res. 81, 447–458.

Schmid H.P., Harzhauser M. & Kroh A. 2001: Hypoxic events on a Middle Miocene carbonate platform of the Central Paratethys (Austria, Badenian, 14 Ma). Ann. Naturhist. Mus. Wien 102, 1–50.

Schmidt K., Garbe-Schönberg D., Bau M. & Koschinsky A. 2010: Rare earth element distribution in >400 ºC hot hydrothermal fluids from 5º S, MAR: the role of anhydrite in controlling highly variable distribution patterns. Geochim. Cosmochim. Acta 74, 4058–4077.

Scholle P.A. & Ulmer-Scholle D.S. 2003: A Color Guide to the Petrography of Carbonate Rocks. AAPG Memoir 77, 1–474.

Schreilechner M.G. & Sachsenhofer R.F. 2007: High resolution sequence stratigraphy in the eastern Styrian Basin (Miocene, Austria). Austrian J. Earth Sci. 100, 164–184.

Schuster R. & Nowotny A. 2015: Die Einheiten des Ostalpinen Kristallins auf den Kartenblättern GK50 Blatt 103 Kindberg und 135 Birkfeld. Arbeitstagung der Geologischen Bundesanstalt Mitterdorf im Mürztal, 10–37.

Seghedi I. & Downes H. 2011: Geochemistry and tectonic development of Cenozoic magmatism in the Carpathian-Pannonian region. Gondwana Res. 20, 655–672

Slapansky P., Belocky R., Fröschl H., Hradecký P. & Spindler P. 1999: Petrography, Geochemie und geotektonische Einstufung des miozänen Vulkanismus im Steirischen Becken (Österreich). Abhandlungen der Geologischen Bundesanstalt 56, 419–434.

Steininger F.F. & Piller W.E. 1999: Empfehlungen (Richtlinien) zur Handhabung der stratigraphischen Nomenklatur. Courier Forschungsinstitut Senckenberg 209, 1–19.

Strauss P., Harzhauser M., Hinsch R. & Wagreich M. 2006: Sequence stratigraphy in a classic pull-apart basin (Neogene, Vienna Basin). A 3D seismic based integrated approach. Geol. Carpath. 57, 185–197.

Suess E. 1860: Erhaltung von Fossilresten im Leithakalk. Verhandlungen der Geologischen Reichsanstalt, 1860, 1–9.

Taylor S.R. & McLennan S.M. 1985: The continental crust, its composition and evolution. Blackwell, 1–328.

Tollmann A. 1985: Geologie von Österreich. Band II. Außerzentralalpiner Anteil: Deuticke, Wien, 1–710.

Ullmann C.V., Campbell H.J., Frei R. & Korte C. 2016: Oxygen and carbon isotope and Sr/Ca signatures of high-latitude Permian to Jurassic calcite fossils from New Zealand and New Caledonia. Gondwana Res. 38, 60–73.

Veizer J. 1983: Trace elements and isotopes in sedimentary carbonates. In: Reeder RJ (ed.): Carbonates: Mineralogy and Chemistry. Mineral. Soc. Am. 11, 265–299.

Wagreich M. & Schmid H.P. 2002: Backstripping dip-slip fault histories: apparent slip rates for the Miocene of the Vienna Basin. Terra Nova 14, 163–168.

Webb G.E., Nothdurft L.D., Kamber B.S., Kloprogge J.T. & Zhao J. 2009: Rare earth element geochemistry of scleractinian coral skeleton during meteoric diagenesis: a sequence through neo-morphism of aragonite to calcite. Sedimentology 56, 1433–1463.

Wedepohl K.H. 1978: Manganese: abundance in common sediments and sedimentary rocks. Handbook of Geochemistry. Springer, Berlin, 1-17.

Wessely G. 1983: Zur Geologie und Hydrodynamik im südlichen-Wiener Becken und seiner Randzone. Mitt. Geol. Ges. Wien 76, 27–68.

Wessely G. 2006: Geologie der Österreichischen Bundesländer — Niederösterreich. Geologische Bundesanstalt, Wien, 1–416.

Wiedl T., Harzhauser M. & Piller W.E. 2012: Facies and synsedimentary tectonics on a Badenian carbonate platform in the southern Vienna Basin (Austria, Central Paratethys). Facies 58, 523–548

Wiedl T., Harzhauser M., Kroh A., Ćorić S. & Piller W.E. 2013: Ecospace variability along a carbonate platform at the northern boundary of the Miocene reef belt (Upper Langhian, Austria). Palaeogeogr. Palaeoclimatol. Palaeoecol. 370, 232–246.

Wiedl T., Harzhauser M., Kroh A., Ćorić S. & Piller W.E. 2014: From biologically to hydrodynamically controlled carbonate production by tectonically induced paleogeographic rearrangement (Middle Miocene, Pannonian Basin). Facies 60, 865–881.

Zhang J., Amakawa H. & Nozaki Y. 1994: The comparative behaviors of yttrium and lanthanides in the seawater of the North Pacific. Geophys. Res. Lett. 21, 2677–2680.

Zhao M.Y. & Zheng Y.F. 2014: Marine carbonate records of terrigenous input into Paleotethyan seawater: Geochemical constraints from Carboniferous limestones. Geochim. Cosmochim. Acta 141, 508–531.

Geologica Carpathica

The Journal of Geological Institute of Slovak Academy of Sciences

Journal Information


IMPACT FACTOR 2017: 1.169
5-year IMPACT FACTOR: 1.431

CiteScore 2018: 1.76

SCImago Journal Rank (SJR) 2018: 0.627
Source Normalized Impact per Paper (SNIP) 2018: 1.203

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 192 149 24
PDF Downloads 162 143 9