Geochemical and isotopic evidence for Carboniferous rifting: mafic dykes in the central Sanandaj-Sirjan zone (Dorud-Azna, West Iran)

Open access


In this paper, we present detailed field observations, chronological, geochemical and Sr–Nd isotopic data and discuss the petrogenetic aspects of two types of mafic dykes, of alkaline to subalkaline nature. The alkaline mafic dykes exhibit a cumulate to foliated texture and strike NW–SE, parallel to the main trend of the region. The 40Ar/39Ar amphibole age of 321.32 ± 0.55 Ma from an alkaline mafic dyke is interpreted as an indication of Carboniferous cooling through ca. 550 °C after intrusion of the dyke into the granitic Galeh-Doz orthogneiss and Amphibolite-Metagabbro units, the latter with Early Carboniferous amphibolite facies grade metamorphism and containing the Dare-Hedavand metagabbro with a similar Carboniferous age. The alkaline and subalkaline mafic dykes can be geochemically categorized into those with light REE-enriched patterns [(La/Yb)N = 8.32–9.28] and others with a rather flat REE pattern [(La/Yb)N = 1.16] and with a negative Nb anomaly. Together, the mafic dykes show oceanic island basalt to MORB geochemical signature, respectively. This is consistent, as well, with the (Tb/Yb)PM ratios. The alkaline mafic dykes were formed within an enriched mantle source at depths of ˃ 90 km, generating a suite of alkaline basalts. In comparison, the subalkaline mafic dykes were formed within more depleted mantle source at depths of ˂ 90 km. The subalkaline mafic dyke is characterized by 87Sr/86Sr ratio of 0.706 and positive ɛNd(t) value of + 0.77, whereas 87Sr/86Sr ratio of 0.708 and ɛNd(t) value of + 1.65 of the alkaline mafic dyke, consistent with the derivation from an enriched mantle source. There is no evidence that the mafic dykes were affected by significant crustal contamination during emplacement. Because of the similar age, the generation of magmas of alkaline mafic dykes and of the Dare-Hedavand metagabbro are assumed to reflect the same process of lithospheric or asthenospheric melting. Carboniferous back-arc rifting is the likely geodynamic setting of mafic dyke generation and emplacement. In contrast, the subalkaline mafic sill is likely related to the emplacement of the Jurassic Darijune gabbro.

Advay M. & Ghalamghash J. 2011: Petrogenesis and U–Pb dating zircon of granites of Heris (NW of Shabestar), eastern Azerbaigan province. Iran. J. Crystallogr. Mineral. 4, 633–648.

Agard P., Omrani J., Jolivet L. & Mouthereau F. 2005: Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. Int. J. Earth Sci. 94, 401–419.

Agard P., Omrani J., Jolivet L., Whitchurch H., Vrielynck B., Spakman W., Monie P., Meyer B. & Wortel R. 2011: Zagros orogency: a subduction-dominated process. Cambridge University Press. Geol. Mag. 148, 692–725.

Alavi M. 1994: Tectonics of the Zagros orogenic belt of Iran: New data and interpretations. Tectonophysics 229, 211–238.

Ayati F. 2015: Geochemistry, petrogenesis and tectono-magmatic setting of the basic magmatism in Ardekan and Isfahan, Central Iran. J. Afr. Earth Sci. 108, 64–73.

Bagheri S. & Stampfli G.M. 2008: The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in central Iran: New geological data, relationships and tectonic implications. Tectonophysics 451, 123–155.

Bea F., Mazhari A., Montero P., Amini S. & Ghalamghash J. 2011: Zircon dating, Sr and Nd isotopes, and element geochemistry of the Khalifan pluton, NW Iran: Evidence for Variscan magmatism in a supposedly Cimmerian superterrane. J. Asian Earth Sci. 44, 172–179.

Berberian M. & King, G.C.P. 1981: Towards a paleogeography and tectonic evolution of Iran. Can. J. Earth Sci. 18, 210–265.

Bezard R., Hébert R., Wang C., Dostal J., Dai J. & Zhong H. 2011: Petrology and geochemistry of the Xiugugabu ophiolitic massif, western Yarlung Zangbo suture zone, Tibet. Lithos 125, 347–367.

Bonin B. 2004: Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos 78, 1–24.

Boynton W.V. 1984: Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (eds) Rare Earth Element Geochemistry. Elsevier, Amesterdam, pp. 63–114.

Briqueu L., Bougault H. & Joron J.L. 1984. Quantification of Nb, Ta, Ti and V anomalies in magmas associated with subduction zones: petrogenetic implications. Earth Planet. Sci. Lett. 68, 297–308.

Buchs D.M., Bagheri S., Martin L., Hermann J. & Arculus R. 2013: Paleozoic to Triassic ocean opening and closure preserved in Central Iran: Constraints from the geochemistry of meta-igneous rocks of the Anarak area. Lithos 172–173, 267–287.

Cathelineau M. 1988: Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner. 23, 471–485.

Condie K.C., 2001. Mantle Plumes and Their Record in earth History. Cambridge University Press, Oxford, UK.

Condie K.C. 2005: High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? Lithos 79, 491–504.

Dachs E. 2004: PET: Petrological Elementary Tools for Mathematica (R): an update. Computers & Geosciences 30, 173–182.

De Paolo D.J. 1981: Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters 53, 189–202.

Deevsalar R., Ghorbani M.R., Ghaderi M., Ahmadian J., Murata M., Ozawa H. & Shinjo R. 2014: Geochemistry and petrogenesis of arc-related to intraplate mafic magmatism from the Malayaer-Boroujerd plutonic complex, northern Sanandaj-Sirjan magmatic zone, Iran. Neues Jahrb. Geol. Paläontol. Abh. 274, 1, 81–120.

Deng H., Kusky T., Polat A., Wang L., Wang J. & Wang S. 2013: Geochemistry of Neoarchean mafic volcanic rocks and late mafic dikys in the Zanhung Complex, Central Orogenic Belt, North China Craton: Implications for geodynamic setting. Lithos 175–176, 193–212.

Ernst R.E. & Buchan K.L. 2001: Large mafic magmatic events through time and links to mantle plume heads. In: Ernst R.E. & Buchan K.L. (Eds.): Mantle plumes: their identification through time. Geol. Soc. Amer., Spec. Pap. 352, 483–575.

Ernst R.E. & Buchan K.L. 2002: Maximum size and distributions in time and space of mantle plumes: evidence from large igneous provinces. J. Geodynamics 34, 309 – 342.

Fergusson C.L., Nutman A.P., Mohajjel M. & Bennett V. 2016: The Sanandaj–Sirjan Zone in the Neo-Tethyan suture, western Iran: Zircon U–Pb evidence of late Palaeozoic rifting of northern Gondwana and mid-Jurassic orogenesis. Gondwana Res. 40, 43–57.

Fitton J.G., Saunders A.D., Norry M.J., Hardarson B.S. & Taylor R.N. 1997: Thermal and chemical structure of the Iceland plume. Earth Planet. Sci. Lett. 153, 197–208.

Frizon de Lamotte D., Tavakoli-Shirazi S., Leturmy P., Averbuch O., Mouchot N., Raulin C., Lepartmentier F., Blanpied C. & Ringenbach J.C. 2013: Evidence for Late Devonian vertical movements and extensional deformation in northern Africa and Arabia: integration in the geodynamics of the Devonian world. Tectonics 32, 1–16.

Ghasemi H., Juteau T., Bellon H., Sabzehei M., Whitechurch H. & Ricou L.E. 2002: The mafic-ultramafic complex of Sikhoran (Central Iran): a polygenetic ophiolite complex. C.R. Geosci. 334, 431–438.

Ghazi A.M., Hassanipak A.A., Tucker P.J., Mobasher K. & Duncan R.A. 2001: Geochemistry and 40Ar–39Ar ages of the Mashhad ophiolite, NE Iran: a rare occurrence of a 300 Ma (Paleo-Tethys) oceanic crust. American Geophysical Union, Fall Meeting 2001, Abstract I/12C-0993.

Goldberg A.S. 2010: Dyke swarms as indicators of major extensional events in the 1.9–1.2 Ga Columbia supercontinent. J. Geodynamics 50, 176–190.

Goodfellow W.D., Cecile M.P. & Leybourne M.I. 1995: Geochemistry, petrogenesis and tectonic setting of lower Paleozoic alkalic and potassic volcanic rocks, Northern Canadian Cordilleran Miogeocline. Can. J. Earth Sci. 32, 1236–1254.

Haase K.M. & Devey C.W. 1994: The petrology and geochemistry of Vesteris Seamount, Greenland Basin-an intraplate alkaline volcano of non-plume origin. J. Petrology 35, 295–328.

Hafkenscheid E., Wortel M.J.R. & Spakman W. 2006: Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions. J. Geophys. Res. 111, B08401.

Halls H.C. & Fahrig W.F. 1987: Mafic dyke swarms. Geol. Assoc. Canada Spec. Pap. 34, 1-502.

Hammarstrom J.M. & Zen E.A. 1986: Aluminium in hornblende: an empirical igneous geobarometer. Am. Mineral. 71, 1297–1313.

Handler R., Neubauer F., Velichkova S.H. & Ivanov Z. 2004: 40Ar/39Ar age constraints on the timing of magmatism and post-magmatic cooling in the Panagyurishte region, Bulgaria. Schweiz. Mineral. Petrogr. Mitt. 84, 119–132.

Hassanzadeh J. & Wernicke B.P. 2016: The Neotethyan Sanandaj-Sirjan zone of Iran as an archetype for passive margin-arc transitions. Tectonics 35, 586-621.

Hochstedter A.G., Gill J.B. & Morris J.D. 1990: Volcanism in the Sumisu Rift, II. Subduction and non-subduction related components. Earth Planet. Sci. Lett. 100, 195–209.

Holland T. & Blundy J. 1994: Nonideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib. Mineral. Petrol. 116, 433–447.

Hollister L.S., Grissom G.C., Peters E.K., Stowell H.H. & Sisson V.B. 1987: Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. Am. Mineral. 72, 231–239.

Honarmand M., Li X.H., Nabatian G. & Neubauer F. 2017: In-situ zircon U-Pb age and Hf-O isotopic constraints on the origin of the Hasan-Robat A-type granite from Sanandaj–Sirjan zone, Iran: implications for reworking of Cadomian arc igneous rocks. Mineral. Petrol., doi:10.1007/s00710-016-0490-y.

Jiang Y.H., Ling H.F., Jiang S.Y., Fan H.H., Shen W.Z. & Ni P. 2005: Petrogenesis of a Late Jurassic Peraluminous Volcanic Complex and its High-Mg, Potassic, Quenched Enclaves at Xiangshan, Southeast China. J. Petrology 46, 1121–1154.

Kargaranbafghi F., Neubauer F. & Genser J. 2015: The tectonic evolution of western Central Iran seen through detrital white mica. Tectonophysics 651–652, 138–151.

Kaygusuz A., Arslan M., Siebel W., Sipahi F. & Ilbeyli N. 2012: Geochronological evidence and tectonic significance of Carboniferous magmatism in the southwest Trabzon area, eastern Pontides, Turkey. Int. Geol. Rev. 54, 15, 1776–1800.

Khanna T.C., Sai V.V.S., Zhao G.C., Rao D.V.S., Krishna A.K., Sawant S.S. & Charan S.N. 2013: Petrogenesis of mafic alkaline dikes from the ~2.18 Ga Mahbubnagar Large Igneous Province, Eastern Dharwar Craton, India: Geochemical evidence for uncontaminated intracontinental mantle derived magmatism. Lithos 179, 84–98.

Kohn B.P., Eyal M. & Feinstein S. 1992: A major Late Devonian–Early Carboniferous (Hercynian) thermotectonic event at the NW margin of the Arabian-Nubian Shield: Evidence from zircon fission track dating. Tectonics 11, 1018–1027.

Khudoley A.K., Prokopiev A.V., Chamberlain K.R., Ernst R.E., Jowitt S.M., Malyshev S.V., Zaitsev A.I., Kropachev A.P. & Koroleva O.V. 2013: Early Paleozoic mafic magmatic events on the eastern margin of the Siberian craton. Lithos 174, 44–56.

Leake B. E., Woolley A.R., Arps C.E.S., Birch W.D., Gillbert M.C., Grice J.D., Hawthorne F.C., Kato A., Kirsh H.J., Krivovichev V.G., Linthout K., Laird J., Mandarino J., Maresch W.V., Nichel E.H., Rock N.M.S., Schumacher J.C., Smith D.C., Stephenson N.C.N., Ungaretti L., Whittaker E.J.W. & Youzhi G. 1997: Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association Commission on New Minerals and Minerals Names. Mineral. Mag. 61, 295–321.

Leitch A.M. & Davies G.F. 2001: Mantle plumes and flood basalts: Enhanced melting from plume ascent and an eclogite component. J. Geophys. Res. 106, 2047–2059.

Li B., Bagas L., Gallardo L.A., Said N., Diwu C.H. & McCuaig T.C. 2013: Back-arc and post-collisional volcanism in the Paleoproterozoic Granites-Tanami Orogen, Australia. Precambrian Res. 224, 570–587.

Lin P.N., Stem R.J., Morris J. & Bloomer S.H. 1990: Nd- and Sr-isotopic compositions of lavas from the northern Mariana and southern Volcano arcs: implications for the origin of island arc melts. Contrib. Mineral. Petrol. 105, 381–392.

Ludwig K.R. 2003: ISOPLOT 3: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Centre, Spec. Publ. 4, 1–72.

Maurice CH., David J., O’Neil J. & Francis D., 2009: Age and tectonic implications of Paleoproterozoic mafic dyke swarms for the origin of 2.2 Ga enriched lithosphere beneath the Ungava Peninsula, Canada. Precambrian Res. 174, 163–180.

McDonough W.F. & Sun S.S. 1995: The composition of the Earth. Chem. Geol. 120, 223–254.

McDougall I. & Harrison M.T. 1999: Geochronology and Thermo-chronology by the 40Ar/39Ar Method. University Press, Oxford, 1–269.

Moghadam H.S., Li X. H., Ling X.X., Stern R.J., Santos J.F., Meinhold G., Ghorbani G. & Shahabi S. 2015: Petrogenesis and tectonic implications of Late Carboniferous A-type granites and gabbronorites in NW Iran: Geochronological and geochemical constraints. Lithos 212–215, 266–279.

Mohajjel M. & Fergusson C. 2000: Dextral transpression in Late Cretaceous continental collision Sanandaj–Sirjan zone western Iran. J. Struct. Geol. 22, 1125–1139.

Morimoto N. 1988: Nomenclature of pyroxenes. Mineral. Petrol. 39, 55–76.

Nutman A.P., Mohajjel M., Bennett V.C. & Fergusson C.L. 2014. Gondwanan Eoarchean–Neoproterozoic ancient crustal material in Iran and Turkey: zircon U–Pb–Hf isotopic evidence. Can. J. Earth Sci. 51, 272–285.

Ordóñez-Calderón J.C., Polat A., Fryer B.J. & Gagnon J.E. 2011: Field and geochemical characteristics of Mesoarchean to neo-archean volcanic rocks in the Storø greenstone belt, SW Greenland: Evidence for accretion of intra-oceanic volcanic arcs. Precambrian Res. 184, 24–42.

Pearce J.A. 2008: Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100, 14–48.

Peng P., Bleeker W., Ernst E.R., Söderlund U. & McNicoll V. 2011: U–Pb baddeleyite ages, distribution and geochemistry of 925 Ma mafic dykes and 900 Ma sills in the North China craton: Evidence for a Neoproterozoic mantle plume. Lithos 127, 210–221.

Pirajno F. & Hoatson D.M. 2012: A review of Australia’s Large Igneous Provinces and associated mineral systems: Implications for mantle dynamics through geological time. Ore Geol. Rev. 48, 2–54.

Renne P.R., Mundil R., Balco G., Min K. & Ludwig K.R. 2010: Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochim. Cosmochim. Acta 74, 18, 5349–5367.

Rieser A.B., Liu Y., Genser J., Neubauer F., Handler R., Friedl G. & Ge X.H. 2006: 40Ar/39Ar ages of detrital white mica constrain the Cenozoic development of the intracontinental Qaidam Basin, China. Geol. Soc. Am. Bull. 118, 1522–1534.

Scaillet S. 2000: Numerical error analysis in 40Ar/39Ar dating. Earth Planet. Sci. Lett. 162, 269–298.

Saccani E., Azimzadeh Z., Dilek Y. & Jahangiri A. 2013: Geochronology and petrology of the Early Carboniferous Misho Mafic Complex (NW Iran), and implications for the melt evolution of Paleo-Tethyan rifting in Western Cimmeria. Lithos 162, 264–278.

Shakerardakani F., Neubauer F., Masoudi F., Mehrabi B., Liu X., Dong Y., Mohajjel M., Monfaredi B. & Friedl G., 2015. Panafrican basement and Mesozoic gabbro in the Zagros orogenic belt in the Dorud-Azna region (NW Iran): Laser-ablation ICP-MS zircon ages and geochemistry. Tectonophysics 647–648, 146–171.

Shakerardakani F., Neubauer F., Bernroider M., Finger F., Genser J., Waitzinger M. & Monfaredi B. (submitted). Conditions and timing of metamorphism in the central Sanandaj-Sirjan zone (Zagros Mountains, Iran): A case of polymetamorphism. J. Metamorph. Geol.

Sharifi M. & Sayari M. 2013: Alkaline basic dykes in the central part of Sanandaj-Sirjan zone (Iran). J. Tethys 1, 41–58.

Sheikholeslami R., Bellon H., Emami H., Sabzehei M. & Pique A. 2003: Nouvelles données structurales et datations 40K/40Ar surles roches métamorphiques de la région de Neyriz (zone de Sanandaj-Sirjan, Iran méridional). Leur intérêt dans le carde du domaine néo-téthysien du Moyen-Orient. C.R. Geosci. 335, 981–991.

Shervais J.W. 1982: Ti–V plots and the petrogenesis of modern and ophiolitic lavas. Earth.Planet. Sci. Lett. 59, 101–118.

Shinjo R., Chung S.L., Kato Y. & Kimura M. 1999: Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: Implications for the evolution of a young, intracontinental back arc basin. J. Geophys. Res. 104, 591–608.

Srivastava R.K. 2011: Dyke Swarms: Keys for Geodynamic Interpretation. Springer, Heidelberg, 1–603.

Stern R.J., Ren M., Ali K., Förster H.J., Al Safarjalani A., Nasir S., Whitehouse M.J., Leybourne M.I. & Romer R.L. 2014: Early Carboniferous (~ 357 Ma) crust beneath northern Arabia: Tales from Tell Thannoun (southern Syria). Earth Planet. Sci. Lett. 393, 83–93.

Sun S.S. & McDonough W.F. 1989: Chemical and isotopic systematic of ocean basalts: implication for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the ocean basins. Geol. Soc. London, Spec. Publ. 42, 313–345.

Tavakoli-Shirazi S., Frizon de Lamotte D., Wrobel-Daveau J-C. & Ringenbach J.C. 2013: Pre-Permian uplift and diffuse extensional deformation in the High Zagros Belt (Iran): integration in the geodynamic evolution of the Arabian plate. Arab. J. Geosci. 6, 2329–2342.

Taylor S.R. & McLennan S.M. 1985: The Continental Crust: Its Composition and Evolution: an Examination of the geochemical record preserved in Sedimentary Rocks. Blackwell Scientific, Oxford, i–xv, 1–312.

Topuz G., Altherr R., Siebel W., Schwarz W.H., Zack T., Hasözbek A., Barth M., Satır M. & Şen C. 2010: Carboniferous high-potassium I-type granitoid magmatism in the eastern Pontides: The Gümüşhane pluton (NE Turkey). Lithos 116, 92–110.

Van Staal C.R., Winchester J.A. & Bédard J.H. 1991: Geochemical variations in Middle Ordovician volcanic rocks of the northern Miramichi Highlands and their tectonic significance. Can. J. Earth Sci. 28, 1031–1049.

Von Quadt A., Gunther D., Frischknecht R. & Dietrich V. 1999: Minor and trace element determinations in Li2B407 fused USGS standard materials calibrated without matrix-matched standards using laser ablation ICP-MS. J. Conference Abstracts 4, 819.

Wang K., Plank T., Walker J.D. & Smith E.I. 2002: A mantle melting profile across the Basin and Range, SW USA. J. Geophys. Res. 107, B1, 2017,

Winchester J.A. & Floyd P.A. 1977: Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 20, 325–343.

Wood D.A. 1980: The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth Planet. Sci. Lett. 50, 11–30.

Zanchetta S., Zanchi A., Villa I.M., Poli S. & Muttoni G. 2009: The Shanderman eclogites: a Late Carboniferous high-pressure event in the NW Talesh Mountains (NW Iran). Geol. Soc. London, Spec. Publ. 312, 57–78.

Zanchetta S., Berra F., Zanchi A., Bergomi M., Caridroit M., Nicora A. & Heidarzadeh G. 2013: The record of the Late Palaeozoic active margin of the Palaeotethys in NE Iran: constraints on the Cimmerian orogeny. Gondwana Res. 24, 1237–1266.

Zanchi A., Zanchetta S., Berra F., Mattei M., Garzanti E., Molyneux S., Nawab A. & Sabouri J. 2009a: The Eo-Cimmerian (Late? Triassic) orogeny in North Iran. Geol. Soc. London, Spec. Publ. 312, 31–55.

Zanchi A., Zanchetta S., Garzanti E., Balini M., Berra F., Mattei M. & Muttoni G. 2009b: The Cimmerian evolution of the Nakhlak–Anarak area, central Iran, and its bearing for the reconstruction of the history of the Eurasian margin. Geol. Soc. London, Spec. Publ. 312, 261–286.

Zhang, C.L., Zou, H.B., Yao, C.Y. & Dong, Y.G. 2014: Origin of Permain gabbroic intrusions in the southern margin of the Altai Orogenic belt: A possible link to the Permian Tarim mantle plume? Lithos 204, 112–124.

Geologica Carpathica

The Journal of Geological Institute of Slovak Academy of Sciences

Journal Information

IMPACT FACTOR 2018: 1,699
5-year IMPACT FACTOR: 1,676

CiteScore 2018: 1.76

SCImago Journal Rank (SJR) 2018: 0.627
Source Normalized Impact per Paper (SNIP) 2018: 1.203

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 190 144 13
PDF Downloads 164 156 9