Surface strain rate colour map of the Tatra Mountains region (Slovakia) based on GNSS data

Open access

Abstract

The surface deformation of the Tatra Mountains region in Western Carpathians can nowadays be studied directly thanks to precise geodetic measurements using the GNSS. The strain or stress tensor field is, however, a rather complex “data structure” difficult to present legibly and with sufficient resolution in the form of a classical map. A novel and promising approach to the solution of this problem is coding the three principal strain or stress values into the three colour channels (red, green, blue) of an RGB colour. In our previous study, the colour depended on the stress tensor shape descriptors. In the current study, the adapted colouring scheme uses a subset of shape descriptors common to stress and strain, which differ only in the scaling factor. In this manner, we generate the colour map of the surface strain rate field, where the colour of each grid point carries the information about the shape of the strain rate tensor at that point. The resulting strain rate colour map can be displayed simultaneously with the map of the faults or elevations and be easily checked for the data or interpolation method errors and incompatibility with the geophysical and geological expectations.

Altamimi Z., Collilieux X., Legrand J., Garayt B. & Boucher C. 2007: ITRF2005: New release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J. Geophys. Res. 112, B09401.

Anczkiewicz A.A., Danišík M. & Środoń J. 2015: Multiple low-temperature thermochronology constraints on exhumation of the Tatra Mountains: New implication for the complex evolution of the Western Carpathians in the Cenozoic. Tectonics 34, 11, 2296-2317.

Bada G., Horváth F., Dövényi P., Szafián P., Windhoffer G. & Cloetingh S. 2007: Present-day stress field and tectonic inversion in the Pannonian basin. Global Planet. Change 58, 1-4: 165-180.

Bednárik M. & Kohút I. 2012: Three-dimensional colour functions for stress state visualization. Computers & Geosciences 48, 117-125.

Bezák V., Broska I., Ivanička J., Ivanička J., Polák M., Potfaj M., Buček J., Janočko J., Kaličiak M., Konečný V., Šimon L., Elečko M., Fordinál K., Nagy A., Maglay J. & Pristaš J. 2008: New edition of general geological map of the Slovak Republic in the scale 1:200,000 [Prehľadná geologická mapa Slovenskej republiky 1:200 000]. Ministry of environment of the Slovak Republic, State Geological Institute of Dionýz Štúr, Bratislava.

Bezák V., Broska I., Ivanička J., Reichwalder P., Vozár J., Polák M., Havrila M., Mello J., Biely A., Plašienka D., Kaličiak M., Žec B., Elečko M., Janočko J., Preszlényi M., Marko M., Maglay J. & Pristaš J. 2004: Tectonic map of the Slovak Republic at 1:500,000 scale [Tektonická mapa Slovenskej republiky 1:500 000]. Ministry of environment of the Slovak Republic, Bratislava. ISBN 80-88974-62-3 (in Slovak).

Briestenský M. & Stemberk J. 2008: Monitoring mikropohybov v jaskyniach západného Slovenska. Acta Carsologica Slovaca, 46, 2, 77-83.

Briestenský M. 2008: Indicators of fault activity in the Brezovské part of Malé Karpaty Mts. [Indikátory zlomovej aktivity brezovskej časti Malých Karpát]. Geomorphologia Slovaca et Bohemica, 8, 1, 16-25 (in Slovak).

Burchart J. 1972: Fission-track age determinations of accessory apatite from the Tatra Mountains, Poland. Earth Planet. Sci. Lett. 15, 4.

Czarnecki K. & Mojzeš M. 2000: Geodynamics of Tatra Mountains - present status and development of the project. Report on geodesy 7, Warszawa,123-124.

Dach R., Hugentobler U., Fridez P. & Meindl M. 2007: Bernese GPS Software version 5.0, Astronomical Institute, University of Bern.

Drewes H. 2009: The actual plate kinematic and crustal deformation model APKIM2005 as basis for a non-rotating ITRF. In: Geodetic reference frames. Springer, Berlin, 95-99.

EPN 2016: EUREF permanent network. Available online at: http://www.epncb.oma.be.

Fejes I. 2002: Consortium for Central European GPS Geodynamic Reference Network (CEGRN): Concept, Objectives and Organization. Reports on Geodesy 61, 1, 15-21.

Fojtíková L., Vavryčuk V., Cipciar A. & Madarás J. 2010: Focal mechanisms of micro-earthquakes in the Dobrá Voda seismoactive area in the Malé Karpaty Mts. (Little Carpathians), Slovakia. Tectonophysics 492, 1-4, 213-229.

Hefty J. & Gerhátová Ľ. 2006: Site velocities from long-term epoch GPS observations - Case study: Central Europe regional geodynamics project 1994-2005. Acta Geodyn. Geomater. 3, 3 (143), 7-17.

Hefty J. 2004: Global positioning system in 4D geodesy [Globálny polohový systém v štvorrozmernej geodézií]. STU, Bratislava. ISBN 80-227-2027-5, 1-112 (in Slovak).

Heidbach O., Tingay M., Barth A., Reinecker J., Kurfeß D. & Müller B. 2009: The World Stress Map based on the database release 2008, equatorial scale 1:46,000,000. Commission for the Geological Map of the World, Paris, doi:

Hradilek L. 1984: Alpine surveying, trigonometric leveling and 3-dimensional terrestrial triangulation [Vysokohorská geodézie - trigonometrická nivelace a trojrozměrná terestrická triangulace]. Academia, Praha, 1-230 (in Czech).

IGS 2016: International GNSS Service. Available online at: http://igscb.jpl.nasa.gov/.

Jarosiński M., Beekman F., Bada G. & Cloetingh S. 2006: Redistribution of recent collision push and ridge push in Central Europe: insights from FEM modeling. Geophys. J. Int. 167, 2, 860-880.

Košťák B. 1969: A new device for in-situ movement detection and measurement. Experimental Mechanics 9, 8, 374-379.

Králiková S., Vojtko R., Sliva Ľ., Minár J., Fügenschuh B., Kováč M. & Hók J. 2014. Cretaceous-Quaternary tectonic evolution of the Tatra Mts. (Western Carpathians): constraints from structural, sedimentary, geomorphic, and fission track data. Geol. Carpath. 65, 4, 307-326.

Littva J., Hók J. & Bella P. 2015: Cavitonics: Using caves in active tectonic studies (Western Carpathians, case study). J. Struct. Geol. 80, 47-56.

Mentes Gy. 2008: Observation of recent tectonic movements by extensometers in the Pannonian Basin. J. Geodynamics 45, 4-5, 169-177.

Mentlík P. & Novotná M. 2010: Elementary forms and “scientific reliability” as an innovative approach to geomorphological mapping. Journal of Maps 6, 1, 564-583.

Nemčok J., Bezák V., Biely A., Gorek A., Gross P., Halouzka R., Janák M., Kahan Š., Kotański Z., Lefeld J., Mello J., Reichwalder P., Rackowski W., Roniewicz P., Ryka W., Wieczorek J. & Zelman J. 1994: Geological map of the Tatra Mts. at 1:50,000 scale [Geologická mapa Tatier 1:50 000]. Ministry of environment of the Slovak Republic , State Geological Institute of Dionýz Štúr, MOSZNL, PIG, Bratislava (in Slovak).

Nemčok J., Bezák V., Janák M., Kahan Š., Ryka W., Kohút M., Lehotský I., Wieczorek J., Zelman J., Mello J., Halouzka R., Rackowski W. & Reichwalder P. 1993: Explanatory notes to the geological map of the Tatra Mts. at 1:50,000 scale [Vysvetlivky ku geologickej mape Tatier 1: 50 000]. State Geological Institute of Dionýz Štúr, Bratislava, 1-135 (in Slovak).

Papčo J. 2010: Monitoring of the Earth’s Crust Deformations in Alpine Area [Monitorovanie deformácií zemskej kôry vo vysokohorskom prostredí]. Thesis, Slovak University of Technology in Bratislava, Faculty of Civil Engineering, 1-127 (in Slovak, with English summary).

Pohánka V. 2005: Universal interpolation method for many-dimensional spaces. Available online at: http://gpi.savba.sk/GPIweb/ogg/pohanka/int.pdf.

Sperner B. & Ratschbacher L. 1995: Rise and fall of the High Tatra Mts. In: Proceedings of Europrobe Workshop Pancardi. SAV, Bratislava, 67-69.

Stangl G. 2007: Guidelines for CEGRN Reprocessing version 1.3. Available online at: http://cergops2.iwf.oeaw.ac.at.

Szalaiová E., Bielik M., Makarenko I., Legostaeva O., Hók J., Starostenko V., Šujan M. & Šefara J. 2008: Calculation of a stripped gravity map with a high degree ofaccuracy: a case study of Liptovská Kotlina Basin (Northern Slovakia). Geol. Quarterly 52, 2, 103-114.

Geologica Carpathica

The Journal of Geological Institute of Slovak Academy of Sciences

Journal Information


IMPACT FACTOR 2017: 1.169
5-year IMPACT FACTOR: 1.431

CiteScore 2017: 1.26

SCImago Journal Rank (SJR) 2017: 0.551
Source Normalized Impact per Paper (SNIP) 2017: 0.836

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 80 80 16
PDF Downloads 60 60 9