Perovskite, reaction product of a harzburgite with Jurassic– Cretaceous accretionary wedge fluids (Western Carpathians, Slovakia): evidence from the whole-rock and mineral trace element data

Open access


Perovskite (Prv) was discovered in an abyssal harzburgite from a “mélange” type blueschist-bearing accretionary wedge of the Western Carpathians (Meliata Unit, Slovakia). Perovskite-1 formation in serpentinized orthopyroxene may be simplified by the mass-balance reaction: Ca2Si2O6 (Ca-pyroxene-member)+2Fe2TiO4 (ulvöspinel molecule in spinel)+2H2O+O2=2CaTiO3 (Prv)+2SiO2+4FeOOH (goethite). Perovskite-2 occurs in a chlorite-rich blackwall zone separating serpentinite and rodingite veins, and in rodingite veins alone. The bulk-rock trace-element patterns suggest negligible differences from visually and microscopically less (“core”) to strongly serpentinized harzburgite due to serpentinization and rodingitization: an enrichment in LREE(La,Ce), Cs, ±Ba, U, Nb, Pb, As, Sb, ±Nd and Li in comparison with HREE, Rb and Sr. The U/Pb perovskite ages at ~135 Ma are interpreted to record the interaction of metamorphic fluids with harzburgite blocks in the Neotethyan Meliatic accretionary wedge. Our LA-ICP-MS mineral study provides a complex view on trace element behaviour during the two stages of rodingitization connected with Prv genesis. The positive anomalies of Cs, U, Ta, Pb, As, Sb, Pr and Nd in Cpx, Opx and Ol are combined with the negative anomalies of Rb, Ba, Th, Nb and Sr in these minerals. The similar positive anomalies of Cs, U, Ta, ±Be, As, Sb found in typical serpentinization and rodingitization minerals, with variable contents of La, Ce and Nd, and negative anomalies of Rb, Ba, Th, Nb and Sr suggest involvement of crustal fluids during MP-LP/LT accretionary wedge metamorphism. LA-ICP-MS study revealed strong depletion in LREE from Prv-1 to Prv-2, and a typically negative Eu (and Ti) anomaly for Prv-1, while a positive Eu (and Ti) anomaly for Prv-2. Our multi-element diagram depicts enrichment in U, Nb, La, Ce, As, Sb, Pr, Nd and decreased Rb, Ba, Th, Ta, Pb, Sr, Zr in both Prv generations. In general, both Prv generations are very close to the end-member composition. In spite of low concentrations of isomorphic constituents, Prv-1 and Prv-2 display the A(La,Ce)3++B(Fe,Cr)3+=ACa2++BTi4+ heterovalent couple substitution. A decrease of ferric iron in Prv-2 indicates increasing reduction conditions during rodingitization.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Arai S. 1992: Chemistry of chromian spinel in volcanic rocks a potential guide to magma chemistry. Mineral. Mag. 56 173-184.

  • Arai S. 1994: Characterization of spinel peridotites by olivine- spinel compositional relationships: review and interpretations. Chem. Geol. 113 191-204.

  • Biely A. Bezák V. Elečko M. Gross P. Kaličiak M. Konečný V. Lexa J. Mello J. Nemčok J. Potfaj M. Rakús M. Vass D. Vozár J. & Vozárová A. 1996: Geological map of Slovakia 1:500000. State Geological Institute of D. Štúr Publishers Bratislava.

  • Cathelineau M. 1988: Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner. 23 471-485.

  • Chakhmouradian A.R. & Mitchell R.H. 1997: Compositional variation of perovskite group minerals from the carbonatite complexes of the Kola alkaline province Russia. Canad. Mineralogist 35 1293-1310.

  • Chakhmouradian A.R. & Mitchell R.H. 2000: Occurrence alteration patterns and compositional variation of perovskite in kimberlites. Canad. Mineralogist 38 975-994.

  • Choi S.H. Shervais J.W. & Mukasa S.B. 2008: Supra-subduction and abyssal mantle peridotites of the Coast Range ophiolite California. Contrib. Mineral. Petr. 156 551-576.

  • Currie K.L. 1975: The geology and petrology of the Ice River alkaline complex British Columbia. Geol. Surv. Canad. Bull. 245 1-68.

  • Dallmeyer R.D. Neubauer F. Handler R. Fritz H. Müller W. Pana D. & Putiš M. 1996: Tectonothermal evolution of the internal Alps and Carpathians: Evidence from 40Ar/39Ar mineral and whole-rock data. Eclogae Geol. Helv. 89 203-227.

  • Eggins S.M. Kinsley L.P.J. & Shelley J.M.G. 1998: Deposition and element fractionation processes occurring during atmospheric pressure sampling for analysis by ICP-MS. Appl. Surf. Sci. 127 (129) 278-286.

  • Faryad S.W. 1995: Phase petrology and P-T conditions of mafic blueschists from the Meliata unit Western Carpathians Slovakia. J. Metamorph. Geol. 13 701-714.

  • Faryad S.W. & Henjes-Kunst F. 1997: Petrological and K-Ar and 40Ar-39Ar age constraints for the tectonothermal evolution of the high-pressure Meliata unit Western Carpathians (Slovakia). Tectonophysics 280 141-156.

  • Franz L. & Wirth R. 2000: Spinel inclusions in olivine of peridotite xenoliths from TUBAF seamount (Bismark Archipelago/Papua New Guinea): evidence for the thermal and tectonic evolution of the oceanic lithosphere. Contrib. Mineral. Petrol. 140 283-295.

  • Heaman L.M. Kjarsgaard B.A. & Creaser R.A. 2003: The timing of kimberlite magmatism and implications for diamond exploration: a global perspective. Lithos 71 153-184.

  • Hovorka D. Jaroš J. Kratochvíl M. & Mock R. 1984: The Mesozoic ophiolites of the Western Carpathians. Krystalinikum 17 143-157.

  • Jackson S.E. Pearson N.J. Griffin W.L. & Belousova E.A. 2004: The application of laser ablation-inductively coupled plasmamass spectrometry (LA-ICP-MS) to in-situ U-Pb zircon geochronology. Chem. Geol. 211 47-69.

  • Jean M.M. Shervais J.W. Choi S.H. & Mukasa S.B. 2010: Melt extraction and melt refertilization in mantle peridotite of the Coast Range ophiolite: an LA-ICP-MS study. Contrib. Mineral. Petrol. 159 113-136.

  • Johnson K.T.M. & Dick H.J.B. 1992: Open system melting and temporal and spatial variation of peridotite and basalt at the Atlantis II fracture zone. J. Geophys. Res. 97 9219-9241.

  • Johnson K.T.M. Dick H.J.B. & Shimizu N. 1990: Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. J. Geophys. Res. 95 2661-2678.

  • Kamenetsky V.S. Crawford A.J. & Meffre S. 2001: Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine Cr-spinel and melt inclusions from primitive rocks. J. Petrology 42 655-671.

  • Khedr M.Z. & Arai S. 2009: Geochemistry of metasomatized peridotites above subducting slab: a case study of hydrous metaperidotites from Happo-O’ne complex central Japan. J. Mineral. Petrol. Sci. 104 313-318.

  • Kodolányi J. Pettke T. Spandler C. Kamber B.S. & Gméling K. 2012: Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafic input to subduction zones. J. Petrology 53 235-270.

  • Kozur H. 1991: The evolution of the Meliata-Hallstatt ocean and its significance for the early evolution of the Eastern Alps and Western Carpathians. Palaeogeogr. Palaeoclimatol. Palaeoecol. 87 109-135.

  • Leško B. & Varga I. 1980: Alpine elements in the West Carpathian structure and their significance. Miner. Slovaca 12 97-130.

  • Li X.H. Putiš M. Yang Y.H. Koppa M. & Dyda M. 2014: Accretionary wedge harzburgite serpentinization and rodingitization constrained by perovskite U/Pb SIMS age trace elements and Sm/Nd isotopes: Case study from the Western Carpathians Slovakia. Lithos 205 1-14.

  • Malvoisin B. Chopin Ch. Brunet F. & Galvez M.E. 2012: Low-temperature wollastonite formed by carbonate reduction: a marker of serpentinite redox conditions. J. Petrology 53 159-176.

  • Marincea Ş. Dumitra Ş. D.G. & Fransolet A.M. 2010: The association spurrite-perovskite in the inner exoskarn zone from Cornet Hill (Metaliferi Mountains Romania). Acta Mineral. Petrogr. Abstract Ser. 6 433.

  • McDonough W.F. & Sun S. 1995: The composition of the Earth. Chem. Geol. 120 223-253.

  • Meisel T. Schöner N. Paliulionyte V. & Kahr E. 2002: Determination of rare earth elements (REE) Y Th Zr Hf Nb and Ta in geological reference materials G-2 G-3 SCo-1 and WGB-1 by sodium peroxide sintering and ICP-MS. Geostand. Newslett. 26 53-61.

  • Mello J. (Ed.) Elečko M. Pristaš J. Reichwalder P. Snopko L. Vass D. & Vozárová A. 1996: Geological map of the Slovenský kras Mts. 1:50000. Regional geological maps of Slovakia. Ministry of Environment of Slovak Republic and State Geological Survey Bratislava.

  • Mello J. Reichwalder P. & Vozárová A. 1998: Bôrka Nappe: highpressure relic from the subduction-accretion prism of the Meliata Ocean (Inner Western Carpathians Slovakia). Slovak Geol. Mag. 4 261-274.

  • Mello J. Ivanička J. (Eds.) Grecula P. Janočko J. Jacko S. Elečko M. Pristaš J. Vass D. Polák M. Vozár J. Vozárová A. Hraško. Kováčik M. Bezák V. Biely A. Németh Z. Kobulský J. Gazdačko J. Madarás J. & Olšavský M. 2008: General geological map of the Slovak Republic 1: 200000. Map sheet: 37- Košice. Ministry of Environment of Slovak Republic and State Geological Institute of Dionýz Štúr Bratislava.

  • Mitchell R.H. & Chakhmouradian A.R. 1998: Instability of perovskite in a CO2-rich environment: examples from carbonatite and kimberlite. Canad. Mineralogist 36 939-952.

  • Mock R. Sýkora M. Aubrecht R. Ožvoldová L. Kronome B. Reichwalder P. & Jablonský J. 1998: Petrology and petrography of the Meliaticum near the Meliata and Jaklovce villages Slovakia. Slovak Geol. Mag. 4 223-260.

  • Müntener O. & Hermann J. 1994: Titanian andradite in a metapyroxenite layer from the Malenco ultramafics (Italy): implications for Ti-mobility and low oxygen fugacity. Contrib. Mineral. Petrol. 116 156-168.

  • Plašienka D. Grecula P. Putiš M. Kováč M. & Hovorka D. 1997: Evolution and structure of the Western Carpathians: an overview. In: Grecula P. Hovorka D. & Putiš M. (Eds.): Geological Evolution of the Western Carpathians. Miner. Slovaca Monographs Geocomplex Bratislava 1-24i.

  • Putiš M. Radvanec M. Hain M. Koller F. Koppa M. & Snárska B. 2011: 3-D analysis of perovskite in serpentinite (Dobšiná quarry) by X-ray micro-tomography. In: Ondrejka M. & Šarinová K. (Eds.): Proceedings. Petros Symposium. Bratislava Comenius University Press 33-37.

  • Putiš M. Koppa M. Snárska B. Koller F. & Uher P. 2012: The blueschist-associated perovskite-andradite-bearing serpentinized harzburgite from Dobšiná (the Meliata Unit) Slovakia. J. Geosci. 57 221-240.

  • Putiš M. Danišík M. Ružička P. & Schmiedt I. 2014: Constraining exhumation pathway in an accretionary wedge by (U-Th)/He thermochronology - Case study on Meliatic nappes in the Western Carpathians. J. Geodyn. 81 80-90.

  • Putiš M. Yang Y.H. Koppa M. Dyda M. & Šmál P. 2015: U/Pb LA-ICP-MS age of metamorphic-metasomatic perovskite from serpentinized harzburgite in the Meliata Unit at Dobšiná Slovakia: Time constraint of fluid-rock interaction in an accretionary wedge. Acta Geol. Slov. 7 63-71.

  • Putnis A. 2009: Mineral replacement reactions. Rev. Mineral. Geochem. 70 87-124.

  • Radvanec M. 2009: P-T path of perovskite-clinopyroxene-grossular bearing fragments enclosed in meta-peridotite (Danková Gemer areaWestern Carpathians). 8th International Eclogite Conference Xining China. Abstracts 121-122.

  • Scambelluri M. Fiebig J. Malaspina N. Müntener O. & Pettke T. 2004: Serpentinite subduction: implications for fluid processes and trace-element recycling. Int. Geol. Rev. 46 595-613.

  • Scambelluri M. Pettke T. Rampone E. Godard M. & Reusser E. 2014: Petrology and trace element budgets of high-pressure peridotites indicate subduction dehydration of serpentinized mantle (Cima di Gagnone Central Alps Switzerland). J. Petrology 55 459-498.

  • Stampfli G.M. 1996: The Intra-Alpine terrain: A Paleotethyan remnant in the Alpine Variscides. Eclogae Geol. Helv. 89 13-42.

  • Uher P. Koděra P. & Vaculovič T. 2011: Perovskite from Ca-Mg skarn-porphyry deposit Vysoká-Zlatno Štiavnica stratovolcano Slovakia. Miner. Slovaca 43 247-254.

  • Ulrych J. Pivec E. Povondra P. & Rutšek J. 1988: Perovskite from melilite rocks Osečná complex northern Bohemia Czechoslovakia. Neu. Jb. Mineral. Mh. H. 2 81-95.

  • Vozárová A. & Vozár J. 1992: Tornaicum and Meliaticum in borehole Brusník BRU-1 Southern Slovakia (Brusník Anticline Rimava Depression). Acta geol. Acad. Sci. Hung. 35 97-116.

  • Whitney D.L. & Evans B.W. 2010: Abbreviations for names of rock-forming minerals. Amer. Mineralogist 95 185-187.

  • Xie L.W. Zhang Y.B. Zhang H.H. Sun J.F. & Wu F.Y. 2008: In situ simultaneous determination of trace elements U-Pb and Lu-Hf isotopes in zircon and baddeleyite. Chinese Sci. Bull. 53 1565-1573.

  • Yuan H.L. Gao S. Liu X.M. Li H.M. Gunther D. & Wu F.Y. 2004: Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry. Geostand. Geoanal. Res. 28 353-370.

  • Zajzon N. Váczi T. Fehér B. Takács Á. Szakáll S. & Weiszburg T.G. 2013: Pyrophanite pseudomorphs after perovskite in Perkupa serpentinites (Hungary): a microtextural study and geological implications. Phys. Chem. Miner. 40 611-623.

Journal information
Impact Factor

IMPACT FACTOR 2018: 1.699
5-year IMPACT FACTOR: 1.676

CiteScore 2018: 1.76

SCImago Journal Rank (SJR) 2018: 0.627
Source Normalized Impact per Paper (SNIP) 2018: 1.203

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 174 72 3
PDF Downloads 114 39 2