Fluid evolution and mineralogy of Mn-Fe-barite-fluorite mineralizations at the contact of the Thuringian Basin, Thüringer Wald and Thüringer Schiefergebirge in Germany

Open access


Numerous small deposits and occurrences of Mn-Fe-fluorite-barite mineralization have developed at the contact of the Thuringian Basin, Thüringer Wald and Thüringer Schiefergebirge in central Germany. The studied mineralizations comprise the assemblages siderite+ankerite-calcite-fluorite-barite and hematite-Mn oxides-calcite-barite, with the precipitation sequence in that order within each assemblage. A structural geological analysis places the origin of the barite veins between the Middle Jurassic and Early Cretaceous. Primary fluid inclusions contain water vapour and an aqueous phase with NaCl and CaCl2 as the main solutes, with salinities mostly between 24–27 mass. % CaCl2 eq. Th measurements range between 85 °C and 160 °C in barite, between 139 °C and 163 °C in siderite, and between 80 °C and 130 °C in fluorite and calcite. Stable isotopes (S, O) point to the evaporitic source of sulphur in the observed mineralizations. The S,C,O isotopic compositions suggest that barite and calcite could not have precipitated from the same fluid. The isotopic composition of the fluid that precipitated barite is close to the sea water in the entire Permo–Mesozoic time span whereas calcite is isotopically distinctly heavier, as if the fluids were affected by evaporation. The fluid evolution in the siliciclastic/volcanic Rotliegend sediments (as determined by a number of earlier petrological and geochemical studies) can be correlated with the deposition sequence of the ore minerals. In particular, the bleaching of the sediments by reduced Rotliegend fluids (basinal brines) could be the event that mobilized Fe and Mn. These elements were deposited as siderite+ankerite within the Zechstein carbonate rocks and as hematite+Mn oxides within the oxidizing environment of the Permian volcanic and volcanoclastic rocks. A Middle-Jurassic illitization event delivered Ca, Na, Ba, and Pb from the feldspars into the basinal brines. Of these elements, Ba was deposited as massive barite veins.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Andreas D. Kästner H. Seidel G. Wiefel H. & Wunderlich J. 1996: Geologische Karte Thüringer Wald 1:100000. Thüringer Landesamt für Geologie Weimar.

  • Baatartsogt B. Schwinn G. Wagner T. Taubald H. Beitter T. & Markl G. 2007: Contrasting paleofluid systems in the continental basement: a fluid inclusion and stable isotope study of hydrothermal vein mineralization Schwarzwald district Germany. Geofluids 7 123–147.

  • Bakker R.J. 2009: Package FLUIDS. Part 3: correlations between equations of state thermodynamics and fluid inclusions. Geofluids 9 63–74.

  • Baumann L. & Leeder O. 1969: Paragenetische Zusammenhänge der mitteleuropäischen Fluorit-Baryt-Lagerstätten. Freiberger Forschung Hefte C 266 89–99.

  • Behr H.J. & Gerler J. 1987: Inclusions of sedimentary brines in post-Variscan mineralizations in the Federal Republic of Germany – a study by neutron activation analysis. Chem. Geol. 61 65–77.

  • Benkó Z. Molnár F. Lespinasse M. Billström K. Pécskay Z. & Németh T. 2014: Triassic fluid mobilization and epigenetic lead-zinc sulphide mineralization in the Transdanubian Shear Zone (Pannonian Basin Hungary). Geol. Carpathica 65 177–194.

  • Betz D. Führer F. & Plein E. 1987: Evolution of the lower Saxony basin. Tectonophysics 137 127–170.

  • Beyschlag F. 1988: Die Erzlagerstätten in der Umgebung von Kamsdorf in Thüringen. Jb. Preußisch Geol. Landesanst. 9 329–377.

  • Boness M. Haack U. & Feldmann K.H. 1990: Rb/Sr-Datierung der hydrothermalen Pb-Zn-Vererzung von Bad Grund (Harz) BRD. Chem. Erde-Geochem. 50 1–25.

  • Boni M. Balassonem G. Fedele L. & Mondillo N. 2009: Post-Variscan hydrothermal activity and ore deposits in southern Sardinia (Italy): selected examples from Gerrei (Silius vein system) and the Iglesiente district. Period. Mineral. 78 19–35.

  • Bouabdellah M. Castorina F. Bodnar R.J. Banks D. Jébrak M. Prochaska W. Lowry D. Klügel A. & Hoernle K. 2013: Petroleum migration fluid mixing and halokinesis as the main oreforming processes at the Peridiapiric Jbel Tirremi fluorite-barite hydrothermal deposit northeastern Morocco. Econ. Geol. 108 1223–1256.

  • Brey-Funke M. 2014: Mineralisierte Fluide im Thüringer Becken. PhD Dissertation Friedrich-Schiller University of Jena 1–189.

  • Brosin P. & Veitenhansl F. 2005: Ausgewählte montangeologische bergtechnische und bergrechtliche Aspekte in der Geschichte des Arlesberger Manganerzbergbaues. Beiträge Zur Geologie Von Thüringen 2005 167–187.

  • Canals A. & Cardellach E. 1993: Strontium and sulfur isotope geochemistry of low-temperature barite-fluorite veins of the Catalonian Coastel Ranges (NE-Spain) — a fluid mixing model and age constraints. Chem. Geol. 104 269–280.

  • Charef A. & Sheppard S.M.F. 1988: The Malines Cambrian carbonate-shale-hosted Pb-Zn deposit France: Thermometric and Isotopic (H O) evidence for pulsating hydrothermal mineralization. Miner. Deposita 23 86–95.

  • Clark I.D. & Fritz P. 1997: Environmental Isotopes in Hydrogeology. CRC Press 1–352.

  • Crespo T.M. Delgado A. Vindel Catena E. López García J.A. & Fabre C. 2002: The latest post-Variscan fluids in the Spanish Central System: evidence from fluid inclusion and stable isotope data. Mar. Petrol. Geol. 19 323–337.

  • Davis D.W. Lowenstein T.K. & Spencer R.J. 1990: Melting behavior of fluid inclusions in laboratory grow halite crystals in the system NaCl-H2O NaCl-KCl-H2O NaCl-MgCl2-H2O and NaCl-CaCl2-H2O. Geochim. Cosmochim. Acta 54 591–601.

  • Ding T. Valkiers S. Kipphardt H. DeBievre P. Taylor P.D.P. Gonfiantini R. & Krouse R. 2001: Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with reassessment of the atomic weight of sulfur. Geochim. Cosmochim. Acta 65 2433–2437.

  • Förster H.J. & Romer R.L. 2010: Carboniferous magmatism. In Linnemann U. & Romer R.L. (Eds.): Pre-Mesozoic Geology of Saxo-Thuringia-From the Cadomian Active Margin to the Variscan Orogen. Schweizbart Stuttgart 287–308.

  • Fournier R.O. & Truesdell A.H. 1973: An empirical Na-K-Ca-chemical geothermometer for natural waters. Geochim. Cosmochim. Acta 37 1255–1275.

  • Franzke H.J. 1992: Bruchprozesse an der Floßberg-Störung bei Ilmenau im Thüringer Wald. Geol. Bl. NO-Bayern 42 69–84.

  • Franzke H.J. & Schiemenz F. 1980: Die Bruchkinematik des Floßberg-Stechberg-Gangsystems bei Ilmenau im Thüringer Wald. Z. Angew. Geol. 26 547–554.

  • Franzke H.J. Kapelle G. & Rölling G. 1982: Flächentrendanalyse der Hauptstörungsebene des Floßberg-Stechberg-Mineralgang-systems bei Ilmenau/Thüringer Wald. Z. Angew. Geol. 28 73–76.

  • Franzke H.J. Ahrendt H. Kurz S. & Wemmer K. 1996: K-Ar Datierungen von Illiten aus Kataklasiten der Floßbergstörung im südöstlichen Thüringer Wald und ihre geologische Interpretation. Z. Geol. Wiss. 24 441–456.

  • Freyberg B. 1923: Erz- und Minerallagerstätten des Thüringer Waldes. Verlag von Gebrüder Borntrager 97–119.

  • Fusswinkel T. Wagner T. Wenzel T. Wälle M. & Lorenz J. 2013: Evolution of unconformity-related Mn-Fe-As vein mineralization Sailauf (Germany): Insight from major and trace elements in oxide and carbonate minerals. Ore Geol. Rev. 50 28–51.

  • Fusswinkel T. Wagner T. Wenzel T. Wälle M. & Lorenz J. 2014: Red bed and basement sourced fluids recorded in hydrothermal Mn-Fe-As veins Sailauf (Germany): A LA-ICPMS fluid inclusion study. Chem. Geol. 363 22–39.

  • Galindo C. Tornos F. Darbyshire D.P.F. & Casquet C. 1994: The age and origin of the barite-fluorite (Pb-Zn) veins of the Sierra del Guadarrama (Spanish Central System Spain): a radiogenic (Nd Sr) and stable isotope study. Chem. Geol. 112 351–364.

  • Gaupp R. & Okkerman J.A. 2011: Diagenesis and reservoir quality of Rotliegend sandstones in the northern Netherlands – a review. In: Grötsch J. & Gaupp R. (Eds.): The Permian Rotliegend of The Netherlands. SEPM Spec. Publ. 98 193–226.

  • Genter A. Evans K. Cuenot N. Fritsch D. & Sanjuan B. 2010: Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems (EGS). C. R. Geosci. 342 502–516.

  • Giesemann A. Jäger H.J. Norman A.L. Krouse H.R. & Brand W.A. 1994: On-line sulfur isotope determination using an elemental analyzer coupled to a mass spectrometer. Anal. Chem. 66 2816–2819.

  • Gleeson S.A. Wilkinson J.J. Shaw H.F. & Herrington R.J. 2000: Post-magmatic hydrothermal circulation and the origin of base metal mineralization Cornwall U.K. J. Geol. Soc. (London) 157 580–600.

  • Hähnel R. Hähnel C. Mädler J. Meinel G. & Wunderlich J. 1995: Strukturelle und stoffliche Entwicklung der anhydritführenden Karbonat-Baryt-Fluorit-Assoziation in der Lagerstätte Hühn (Nordwestlicher Thüringer Wald). Geol. Jb. Hessen 123 5–24.

  • Halliday A.N. & Mitchell J.G. 1984: K-Ar ages of clay-size concentrates from the mineralisation of the Pedroches Batholitz Spain and evidence for Mesozoic hydrothermal activity associated with the breakup of Pangaea. Earth Planet. Sci. Lett. 68 229–239.

  • Heijlen W. Muchez P.H. Banks D.A. Schneider J. Kucha H. & Keppens E. 2003: Carbonate-hosted Zn-Pb deposits in Upper Silesia Poland: origin and evolution of mineralizing fluids and constraints on genetic models. Econ. Geol. 98 911–932.

  • Hurai V. Huraiová M. Slobodník M. & Thomas R. 2015: Geofluids. Developments in Microthermometry Spectroscopy Thermodynamics and Stable Isotopes. Elsevier 1–472.

  • Hurai V. Harčová E. Huraiová M. Ozdín D. Prochaska W. & Wiegerová V. 2002: Origin of siderite veins in the Western Carpathians I. P-T-X-δ13C-δ18O relations in ore-forming brines of the Rudňany deposits. Ore Geol. Rev. 21 67–101.

  • Hurai V. Prochaska W. Lexa O. Schulmann K. Thomas R. & Ivan P. 2008: High density nitrogen inclusions in barite from a giant siderite vein: implications for Alpine evolution of the Variscan basement of Western Carpathians Slovakia. J. Metamorph. Geology 26 487–498.

  • Johnson C.A. Cardellach E. Tritlla J. & Hanan B.B. 1996: Cierco Pb-Zn-Ag vein deposits: isotopic and fluid inclusion evidence for formation during the Mesozoic extension in the Pyrenees of Spain. Econ. Geol. 91 497–506.

  • Jowett E.C. 1986: Genesis of Kupferschiefer Cu-Ag deposits by convective flow of Rotliegendes brines during Triassic rifting. Econ. Geol. 81 1823–1837.

  • Kampschulte A. Buhl D. & Strauss H. 1998: The sulfur and strontium isotopic composition of Permian evaporites from the Zechstein basin northern Germany. Geol. Rdsch. 87 192–199.

  • Kießling T. 2007: Die Flussspatgewinnung bei Ilmenau im Thüringer Wald. Bergbau 3 112–120.

  • Klemm W. 1986: Beiträge zur analytischen Geochemie von Gas-Flüssigkeits-Einschlüssen hydrothermaler Minerale. Dissertation B TUBA Freiberg 1–72.

  • Kley J. & Voigt T. 2008: Late Cretaceous intraplate thrusting in central Europe: Effect of Africa-Iberia-Europe convergence not Alpine collision. Geology 36 839–842.

  • Kling M. 1995: The ankerite-siderite-sulphide-barite deposit of Kamsdorf (Thuringia Germany). In: Pašava J. Kříbek B. & Žák K. (Eds.): Mineral Deposits: From their origin to their environmental impacts. Proceedings of the Third Biennal SGA Meeting Prague/Czech Republic Balkema Rotterdam 275–276.

  • Kockel F. 2002: Rifting processes in NW-Germany and the German North Sea Sector. Geologie en Mijnbouw 81 149–158.

  • Kornexl B.E. Gehre M. Höfling R. & Werner R.A. 1999: On-line δ18O measurement of organic and inorganic substances. Rapid Commun. Mass Spectrom. 13 1685–1693.

  • Krahn L. & Baumann A. 1996: Lead isotope systematics of epigenetic lead-zinc mineralization in the western part of the Rheinisches Schiefergebirge Germany. Miner. Deposita 31 225–237.

  • Kramm U. & Wedepohl K.H. 1991: The isotopic composition of strontium and sulfur in seawater of late Permian (Zechstein) age. Chem. Geol. 90 253–262.

  • Kučera J. Muchez P. Slobodník M. & Prochaska W. 2010: Geochemistry of highly saline fluids in siliciclastic sequences: genetic implications for post-Variscan fluid flow in the Moravosilesian Palaozoic of the Czech Republic. Int. J. Earth Sci. 99 269–284.

  • Kuschka E. & Franzke H.J. 1974: Zur Kenntnis der Hydrothermalite des Harzes. Z. Geol. Wiss. 2 1417–1436.

  • Lahiry A.K. 1974: Untersuchungen an Flüssigkeitseinschlüssen zur Klärung der paragenetischen Verhältnisse am Beispiel saxonischer Lagerstätten. Freiberger Forschung Hefte C 302 1–95.

  • Leach D.L. Viets J.G. Kozlowski A. & Kibitlewski S. 1996: Geology geochemistry and genesis of the Silesia-Cracow zinc-lead district southern Poland. Econ. Geol. Spec. Pap. 4 70–144.

  • Liessmann W. 2010: Historischer Bergbau im Harz. Springer 1–470.

  • Lippmann R. Voigt T. Lützner H. Baunack C. & Föhlisch K. 2005: Geochemische Zyklen im Unteren Muschelkalk (Typus-profil der Jena Formation Steinbruch Steudnitz). Z. Geol. Wiss. 331 27–50.

  • Loos G. Saupe M. Mädler U. & Meinel G. 1981: Beitrag zur Klärung der epithermalen Fluoritgenese mit Hilfe der Spurenelementanalyse. Z. Geol. Wiss. 27 567–573.

  • Lüders V. & Möller P. 1992: Fluid evolution and ore deposition in the Harz Mountains (Germany). Eur. J. Mineral. 4 1053–1068.

  • McGaig A.M. Tritlla J. & Banks D.A. 2000: Fluid mixing and recycling during Pyrenean thrusting: Evidence from fluid inclusion halogen ratios. Geochim. Cosmochim. Acta 19 3395–3412.

  • Meinel G. 1993: Die Bildung der Gangmineralisationen Thüringens. Geowiss. Mitt. Thüringen Beih. 1 1–111.

  • Mertz D.F. Lippolt H.J. & Schnorrer-Köhler G. 1989: Early Cretaceous mineralizing activity in the St. Andreasberg ore district (Southwest Harz Federal Republic of Germany). Miner. Deposita 24 9–13.

  • Meyer M. Brockamp O. Clauer N. Renk A. & Zuther M. 2000: Further evidence for a Jurassic mineralizing event in central Europe: K-Ar dating of hydrothermal alteration and fluid inclusion systematics in wall rocks of the Käfersteige fluorite vein deposit in the northern Black Forest Germany. Miner. Deposita 35 754–761.

  • Muchez P. Heijlen W. Banks D. Blundell D. Boni M. & Grandia F. 2005: Extensional tectonics and the timing and formation of basin-hosted deposits in Europe. Ore Geol. Rev. 27 241–267.

  • Munoz M. & Premo W.R. 2005: Sm-Nd dating of fluorite from the worldclass Montroc fluorite deposit southern Massif Central France. Miner. Deposita 39 970–975.

  • Munoz M. Boyce A.J. Courjault-Rade P. Fallick A.E. & Tollon F. 1994: Multi-stage fluid incursion in the Palaeozoic basement-hosted Saint-Salvy ore deposit (NW Montagne Noire southern France). Appl. Geochem. 9 609–626.

  • Naden J. 1996: Calcic Brine; a Microsoft Excel 5.0 add-in for calculating salinities from microthermometric data in the system NaCl-CaCl2-H2O. In: Brown P.E. & Hagemann S.G. (Eds.): PACROFI VI. University of Wisconsin Madison WI 87–89.

  • Nitschke F. Scheiber J. Kramar U. & Neumann T. 2014: Formation of alternating layered Ba-Sr-sulfate and Pb-sulfide scaling in the geothermal plant of Soultz-sous-Forêts. Neu. Jb. Mineral. Abh. 191 2 145–156.

  • O’Reily C.O. Jenkin G.R.T. Feely M. Alderton D.H.M. & Fallick A.E. 1997: A fluid inclusion and stable isotope study of 200 Ma of fluid evolution in the Galway Granite Connemara Ireland. Contr. Mineral. Petrology 129 120–142.

  • Peisker J. Voigt T. Aehnelt M. & Köster J. 2013: Rekonstruktion der Versenkungsgeschichte des zentralen Thüringer Beckens mit Inkolhungswerten aus dem Kupferschiefer. Beitr. Geol. Thüringen 20 121–137.

  • Piqué A. Canals A. Grandia F. & Banks D.A. 2008: Mesozoic fluorite veins in NE Spain record regional base metal-rich brine circulation through basin and basement during extensional events. Chem. Geol. 257 139–152.

  • Pratzka G. 1956: Lagerstättengeologische Bearbeitung der Schwerspat-Flußspatlagerstätten in der Umgebung von Trusetal/Thür. Diploma ThesisBergakademie Freiberg 1–88.

  • Rauche H. & Franzke H.J. 1990: Stress field evolution at the northern part of the South German Block on the territory of the GDR. Gerlands Beitr. Geophysik 99 441–461.

  • Richardson C.K. & Holland H.D. 1979: The solubility of fluorite in hydrothermal solutions an experimental study. Geochim. Cosmochim. Acta 43 1313–1325.

  • Roedder E. 1984: Fluid inclusions. Rev. Mineralogy 12 1–604.

  • Rüger F. & Decker H. 1992: Bergbaugeschichte Geologie und Mineralien des Saalfeld-Kamsdorfer Bergreviers. Veröff. Museum Gera Naturw. Reihe 19 1–70.

  • Scheiber J. Nitschke F. Seibt A. & Genter A. 2012: Geochemical and mineralogical monitoring of the geothermal power plant in Soultz-sous-Forêts (France). In: Proceedings of the Thirty-Seventh Workshop on Geothermal Reservoir Engineering. Stanford University SGP-TR-194.

  • Schmidt-Mumm A. & Wolfgramm M. 2004: Fluid systems and mineralizations in the north German and Polish Basin. Geofluids 4 315–328.

  • Schröder B. 1987: Inversion tectonics along the western margin of the Bohemian Massif. Tectonophysics 137 93–100.

  • Schröder N. 1970: Die magmatogenen Mineralisationen des Thüringer Waldes und ihre Stellung im variszischen und saxonischen Mineralisationszyklus Mitteleuropas. Freiberger Forschung Hefte C 261 7–52.

  • Schwinn G. Wagner T. Baatartsogt B. & Markl G. 2006: Quantification of mixing processes in ore-forming hydrothermal systems by combination of stable isotope and fluid inclusion analyses. Geochim. Cosmochim. Acta 70 965–982.

  • Slobodnik M. Muchez P.H. & Viaene W. 1994: Variscan and Post-Variscan fluid flow in the Rhenohercynicum of the Ardennes (southern Belgium) and in the eastern part of the Bohemian Massif. J. Czech Geol. Soc. 39 106–107.

  • Spencer R.J. Möller N. & Weare J.H. 1990: The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na-K-Ca-Mg-Cl-SO4-H2O systems at the temperatures below 25 °C. Geochim. Cosmochim. Acta 54 575–590.

  • Spirakis C.S. & Heyl A.V. 1988: Possible effects of thermal degradation of organic matter on carbonate paragenesis and fluorite precipitation in Mississippi Valley-type deposits. Geology 16 1117–1120.

  • Staude S. Wagner T. & Markl G. 2007: Mineralogy mineral compositions and fluid evolution at the Wenzel hydrothermal deposit southern Germany: Implications for the formation of Kongsberg-type silver deposit. Canad. Mineralogist 45 1147–1176.

  • Staude S. Göb S. Pfaff K. Ströble F. Premo W.R. & Markl G. 2011: Deciphering fluid sources of hydrothermal systems: A combined Sr- and S-isotope study on barite (Schwarzwald SW Germany). Chem. Geol. 286 1–20.

  • Steele-MacInnies M. Bodnar R.J. & Naden J. 2011: Numerical model to determine the composition of H2O-NaCl-CaCl2 fluid inclusions based on microthermometric and microanalytical data. Geochim. Cosmochim. Acta 75 21–40.

  • Subías I. & Fernández-Nieto C. 1995: Hydrothermal events in the Valle de Tena (Spanish Western Pyrenees) as evidenced by fluid inclusions and trace-element distribution from fluorite deposits. Chem. Geol. 124 267–282.

  • Symons D.T.A. Kawasaki K. Walther S. & Borg G. 2011: Paleomagnetism of the Cu-Zn-Pb-bearing Kupferschiefer black shale (Upper Permian) at Sangerhausen Germany. Miner. Deposita 46 137–152.

  • Thomas R. 1979: Untersuchungen von Einschlüssen zur thermodynamischen und physikochemischen Charkteristik lagerstättenbildender Lösungen und Prozesse im magmatischen und postmagmatischen Bereich. Dissertation A TUBA Freiberg 1–245.

  • Toth J.R. 1980: Deposition of submarine crusts rich in manganese and iron. Bull. Geol. Soc. Am. 91 44–54.

  • Ullrich M.R. & Bodnar R.J. 1987: Systematics of stretching of fluid inclusions II: Barite at 1 atm confining pressure. Econ. Geol. 83 1037–1046.

  • Verma S.P. & Santoyo E. 1997: New improved equations for Na/K Na/Li and SiO2 geothermometers by outlier detection and rejection. J. Volcanol. Geotherm. Res. 79 9–23.

  • Wagner T. & Lorenz J. 2002: Mineralogy of complex Co-Ni-Bi vein mineralization Bieber deposit Spessart Germany. Mineral. Mag. 66 385–407.

  • Wagner T. Okrusch M. Weyer S. Lorenz J. Lahaye Y. Taubald H. & Schmitt R.T. 2010: The role of the Kupferschiefer in the formation of hydrothermal base metal mineralization in the Spessart ore district Germany: insight from detailed sulfur isotope studies. Miner. Deposita 45 217–239.

  • Werner C.D. 1958: Geochemie und Paragenese der saxonischen Schwerspat-Flußspat-Gänge im Schmalkaldener Revier. Freiberger Forschung Hefte C 47 7–110.

  • Wickham S.M. & Taylor H.P. 1990: Hydrothermal systems associated with regional metamorphism and crustal anatexis: Example from the Pyrenees France. In: Geophysics Study Committee: The role of fluids in crustal processes. National Academy Press 96–112.

  • Wucher K. Steinmüller A. & Puff P. 2001: Geologische Karte von Thüringen 1:25000; 5334 Saalfeld (Saale). 3rd edition TLUG Jena.

  • Zeh A. & Thomson S.N. 2000: Fission-track thermochronology of the Ruhla Crystalline Complex: new contraints on the post-Variscan thermal evolution of the NW Saxo-Bohemian Massif. Tectonophysics 324 17–35.

  • Zheng Y.-F. 1999: Oxygen isotope fractionation in carbonate and sulfate minerals. Geochemical J. 33 109–126.

  • Zheng Y.-F. & Hoefs J. 1993: Stable isotope geochemistry of hydrothermal mineralizations in the Harz Mountains. II. Sulfur and oxygen isotopes of sulfides and sulfate and constraints on metallogenetic models. In: Möller P. & Lüders V. (Eds.): Formation of hydrothermal vein deposits. Monogr. Ser. Min. Deps. 30 211–230.

  • Ziegler P.A. 1987: Late Cretaceous and Cenozoic intra-plate compressional deformations in the Alpine Foreland — a geodynamic model. Tectonophysics 137 389–420.

  • Zieliński G.W. Poprawa P. Szewczyk J. Grotek I. Kiersnowski H. & Zieliński R.L.B. 2012: Thermal effects of Zechstein salt and the Early to Middle Jurassic hydrothermal event in the central Polish Basin. AAPG Bulletin 96 1981–1996.

  • Zimmermann E. 1914: Erläuterungen zur Geologischen Karte von Preussen und benachbarten Bundesstaaten 1:25000; Blatt Saalfeld a. Saale. Königlich Preußischen Geol. Landesanst. Berlin.

Journal information
Impact Factor

IMPACT FACTOR 2018: 1.699
5-year IMPACT FACTOR: 1.676

CiteScore 2018: 1.76

SCImago Journal Rank (SJR) 2018: 0.627
Source Normalized Impact per Paper (SNIP) 2018: 1.203

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 319 152 4
PDF Downloads 152 75 3