Variscan thrusting in I- and S-type granitic rocks of the Tribeč Mountains, Western Carpathians (Slovakia): evidence from mineral compositions and monazite dating

Open access


The Tribeč granitic core (Tatric Superunit, Western Carpathians, Slovakia) is formed by Devonian/Lower Carboniferous, calc-alkaline I- and S-type granitic rocks and their altered equivalents, which provide a rare opportunity to study the Variscan magmatic, post-magmatic and tectonic evolution. The calculated P-T-X path of I-type granitic rocks, based on Fe-Ti oxides, hornblende, titanite and mica-bearing equilibria, illustrates changes in redox evolution. There is a transition from magmatic stage at T ca. 800–850 °C and moderate oxygen fugacity (FMQ buffer) to an oxidation event at 600 °C between HM and NNO up to the oxidation peak at 480 °C and HM buffer, to the final reduction at ca. 470 °C at ΔNN= 3.3. Thus, the post-magmatic Variscan history recorded in I-type tonalites shows at early stage pronounced oxidation and low temperature shift back to reduction. The S-type granites originated at temperature 700–750 °C at lower water activity and temperature. The P-T conditions of mineral reactions in altered granitoids at Variscan time (both I and S-types) correspond to greenschist facies involving formation of secondary biotite. The Tribeč granite pluton recently shows horizontal and vertical zoning: from the west side toward the east S-type granodiorites replace I-type tonalites and these medium/coarse-grained granitoids are vertically overlain by their altered equivalents in greenschist facies. Along the Tribeč mountain ridge, younger undeformed leucocratic granite dykes in age 342±4.4 Ma cut these metasomatically altered granitic rocks and thus post-date the alteration process. The overlaying sheet of the altered granites is in a low-angle superposition on undeformed granitoids and forms “a granite duplex” within Alpine Tatric Superunit, which resulted from a syn-collisional Variscan thrusting event and melt formation ~340 Ma. The process of alteration may have been responsible for shifting the oxidation trend to the observed partial reduction.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bezák V. Vozár J. & Hvožďara M. 2011b: Interpretation of the Tribeč Mts. deep geological structure based on results of geophysical mainly magnetotelluric modeling. Contr. Geophys. Geodesy 41 297–306.

  • Bezák V. Broska I. Konečný P. Petrík I. & Košler J. 2008: Permian magmatic complex in Northern Veporicum: Interpretation of new datings of acid magmatites. [Permský magmatický komplex v severnom veporiku: interpretácia z nových datovaní kyslých magmatitov.] Miner. Slovaca 40 127–134.

  • Bezák V. Pek J. Vozár J. Bielik M. & Vozár J. 2014: Geoelectrical and geological structure of the crust in Western Slovakia. Stud. Geophys. Geod. 58 473–488.

  • Bezák V. Jacko S. Janák M. Ledru P. Petrík I. & Vozárová A. 1997: Main Hercynian lithotectonic units of the Western Carpathians. In: Grecula P. Hovorka D. & Putiš M. (Eds.): Geological evolution of the Western Carpathians. Geocomplex Bratislava 261–269.

  • Bezák V. Biely A. Elečko M. Konečný V. Mello J. Polák M. & Potfaj M. 2011a: A new synthesis of the geological structure of Slovakia – the general geological map at 1: 200000 scale. Geol. Quart. 55 1–8.

  • Bezák V. Broska I. Ivanička J. Reichwalder P. Vozár J. Polík M. Havrila M. Mello J. Biely A. Plašienka D. Potfaj M. Konečný V. Lexa J. Kalinčiak M. Žec B. Vass D. Elečko M. Janočko J. Pereszlényi M. Marko F. Maglay J. & Pristaš J. 2004: Tectonic map of Slovak Republic 1: 500000. MŽP SR ŠGÚDŠ Bratislava (in Slovak).

  • Bielik M. Šefara J. Kováč M. Bezák V. & Plašienka D. 2004: The Western Carpathians – interaction of Hercynian and Alpine processes. Tectonophysics 393 63–86.

  • Biely A. 1974: Geological map of the Tríbeč Mountains 1: 50000. GÚDŠ Bratislava (in Slovak).

  • Biely A. Bezák V. Elečko M. Kaličiak M. Konečný V. Lexa J. Mello J. Nemčok J. Potfaj M. Rakús M. Vass D. Vozár J. & Vozárová A. 1996: Geological map of Slovakia 1: 500000. Geol. Surv. Slovak Republic Bratislava (in Slovak).

  • Blundy J.D. & Holland T.J.B. 1990: Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contr. Mineral. Petrology 104 208–224.

  • Broska I. & Gregor T. 1992: Allanite-magnetite and monazite-ilmenite granitoid series in the Tríbeč Mts. In: Vozár J. (Ed.): Western Carpathians Eastern Alps Dinarides. IGCP Project No. 276. GÚDŠ Bratislava 25–36.

  • Broska I. & Petrík I. 2011: Accessory Fe-Ti oxides in the West-Carpathian I-type granitoids: witnesses of the granite mixing and late oxidation processes. Miner. Petrology 101 87–97.

  • Broska I. & Uher P. 2001: Whole-rock chemistry and genetic typology of the West-Carpathian Variscan granites. Geol. Carpathica 52 79–90.

  • Broska I. Petrík I. & Williams C.T. 2000: Coexisting monazite and allanite in peraluminious granitoids of the Tribeč Mountains Western Carpathians. Amer. Mineralogist 85 22–32.

  • Broska I. Petrík I. & Uher P. 2012: Accessory minerals of the Carpathian granitic rocks. Veda Bratislava 1–235 (in Slovak with English summary).

  • Broska I. Williams C.T. Janák M. & Nagy G. 2005: Alteration and breakdown of xenotime-(Y) and monazite-(Ce) in granitic rocks of the Western Carpathians Slovakia. Lithos 82 71–83.

  • Broska I. Harlov D. Tropper P. & Siman P. 2007: Formation of magmatic titanite and titanite-ilmenite phase relations during granite alteration in the Tribeč mountains Western Carpathians Slovakia. Lithos 95 58–71.

  • Broska I. Petrík I. Be‘eri-Shlevin Y. Majka J. & Bezák V. 2013: Devonian/Missisipian I-type granitoids in the Western Carpathians: a subduction-related hybrid magmatism. Lithos 162–163 27–36.

  • Budzyń B. & Kozub-Budzyń G.A. 2015: The stability of xenotime in high Ca and Ca-Na systems under experimental conditions of 250–350 °C and 200–400 MPa: the implications for fluid-mediated low-temperature processes in granitic rocks. Geol. Quart. 59 316–324.

  • Budzyń B. Harlov D.E. Williams M.L. & Jercinovic M.J. 2011: Experimental determination of stability relations between monazite fluorapatite allanite and REE-epidote as a function of pressure temperature and fluid composition. Amer. Mineralogist 96 1547–1567.

  • Carmichael I.S.E. Turner F.J. & Verhhogen J. 1974: Igneous petrology. McGraw Hill Int. Ser. Earth Planet. Sci. New York 1–739.

  • Cocherie A. & Albarède F. 2001: An improved U-Th-Pb age calculation for electron microprobe dating of monazite. Geochim. Cosmochim. Acta 65 4509–4522.

  • Demko R. & Hraško Ľ. 2013: Rhyolite body Gregová near the Telgárt village (Western Carpathians). Miner. Slovaca 45 161–174 (in Slovak with English summary).

  • Droop G.T.R. 1987: A general equation for estimating Fe3+ concentrations in ferromagnesian 530 silicates and oxides from microprobe analyses using stoichiometric criteria. Mineral. Mag. 51 531 431–435.

  • Eichorn R. Loth G. Höll R. Finger F. Schermaier A. & Kennedy A. 2000: Multistage Variscan magmatism in the central tauern Window (Austria) unveiled by U/Pb SHRIMP zircon data. Contr. Mineral. Petrology 139 418–435.

  • Finger F. Broska I. Roberts M. & Schermeier A. 1998: Replacement of primary monazite by apatite-allanite-epidote coronas in an amphibolite facies granite gneiss from the eastern Alps. Amer. Mineralogist 83 248–258.

  • Finger F. Roberts M.P. Haunschmid B. Schermaier A. & Steyrer H.P. 1997: Variscan granitoids of central Europe: their typology potential sources and tectonothermal relations. Miner. Petrology 61 67–96.

  • Finger F. Gerdes A. Janoušek V. René M. & Riegler G. 2007: Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and the Moravo-Moldanubian tectonometamorphic phases. J. Geosci. 52 9–28.

  • Finger F. Broska I. Haunschmid B. Hraško Ľ. Kohút M. Krenn E. Petrík I. Riegler G. & Uher P. 2003: Electron-microprobe dating of monazites from Western Carpathian basement granitoids: plutonic evidence for an important Permian rifting event subsequent to Variscan crustal anataxis. Int. J. Earth Sci. 92 86–98.

  • Ghiorso M.S. & Evans B.W. 2008: Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe-Ti two oxide geothermometer and oxygen-barometer. Amer. J. Sci. 308 957–1039.

  • Holland T.J.B & Powell R. 2011: An improved and extended internally consistent thermodynamic dataset for phases of petrological interest involving a new equation of state for solids. J. Metamorph. Geology 29 333–383.

  • Hollister L.S. Grissom G.C. Peters E.K. Stowell H.H. & Sisson V.B. 1987: Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. Amer. Mineralogist 72 231–239.

  • Hurai V. Janák M. Ludhová L. Horn E.E. Thomas R. & Majzlan J. 2000: Nitrogen-bearing fluids brines and carbonate liquids in Variscan migmatites of the Tatra Mountains Western Carpathians – heritage of high-pressure metamorphism. Eur. J. Mineral. 12 1283–1300.

  • Ivanička J. Polák M. Hók J. Határ J. Greguš J. Vozár J. Nagy A. Fordinál K. Pristaš J. Konenčný V. & Šimon L. 1998a: Geological map of Tribeč Mts. 1: 50000. MŽP SR GSSR Bratislava (in Slovak).

  • Ivanička J. Hók J. Polák M. Határ J. Vozár J. Nagy A. Fordinál K. Pristaš J. Konečný V. Šimon L. Kováčik M. Vozárová A. Fejdiová O. Marcin D. Liščák P. Macko A. Lanc J. Šantavý J. & Szalaiová V. 1998b: Explanations to geological map of Tribeč Mts. 1: 50000. GSSR Bratislava 1–246 (in Slovak).

  • Janák M. & Plašienka D. 1999: Deciphering Alpine and Pre-Alpine metamorphism in the Western Carpathians: an overview. Geol. Carpathica Spec. Issue 50 105–107.

  • Janák M. Plašienka D. Frey M. Cosca M. Schmidt Th. Lupták B. & Méres Š. 2001: Cretaceous evolution of a metamorphic core complex the Veporic unit Western Carpathians (Slovakia): P-T conditions and in situ 40Ar/39Ar UV laser probe dating of metapelites. J. Metamorph. Geology 19 197–216.

  • Janoušek V. & Gerdes A. 2003: Timing the magmatic activity within the Central Bohemian Pluton Czech Republic: conventional U-Pb ages for the Sázava and Tábor intrusions and their geotectonic significance. J. Czech Geol. Soc. 48 70–71.

  • Janoušek V. Wiegand B. & Žák J. 2010: Dating the onset of Variscan crustal exhumation in the core of the Bohemian Massif: new U-Pb single zircon ages from the high-K calc-alkaline granodiorites of the Blatná suite Central Bohemian Plutonic complex. J. Geol. Soc. London 167 347–360.

  • Janoušek V. Braitwaite C.J.R. Bowes D.R. & Gerdes A. 2004: Magma-mixing in the genesis of Hercynian calc-alkaline granitoids: an integrated petrographic and geochemical study of the Sázava intrusion Central Bohemian Pluton Czech Republic. Lithos 78 67–99.

  • Janots E. Engi M. Berger A. Allaz J. Schwarz J.O. & Spandler C. 2008: Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: implications for allanite-monazite-xenotime phase relations from 250 to 610 °C. J. Metamorph. Geology 26 509–526.

  • Kahan Š. 1969: Eine neue Ansicht über den geologischen Aufbau des Kristallinkums der West-Tatra. Acta Geol. Geogr. Univ. Comen. 18 19–78.

  • Kohút M. 2015: Dating of the granitoid rock from the Žiar Mountains. In: Ondrejka M. (Ed.): Mineralogical-petrological conference Petros 2015. Comenius University Bratislava 22 (in Slovak).

  • Kohút M. & Stein H. 2005: Re-Os molybdenite dating of granite-related Sn-W-Mo mineralisation at Hnilec Gemeric superunit Slovakia. Miner. Petrology 85 117–127.

  • Kohút M. Kovach V.P. Kotov A.B. Salnikova E.B. & Savatenkov V.M. 1999: Sr and Nd isotope geochemistry of Hercynian granitic rocks from the Western Carpathians – implications for granite genesis and crustal evolution. Geol. Carpathica 50 477–487.

  • Kohút M. Uher P. Putiš M. Ondrejka M. Sergeev S. Larionov A. & Paderin I. 2009: SHRIMP U-Th-Pb zircon dating of the granitoid massifs in the Malé Karpaty Mountains (Western Carpathians): evidence of Meso-Hercynian successive S- to I-type granitic magmatism. Geol. Carpathica 60 345–350.

  • Konečný P. Siman P. Holický I. Janák M. & Kollárová V. 2004: Methodics of monazite dating using an electron microprobe. Miner. Slovaca 36 225–235 (in Slovak).

  • Kotková J. Schaltegger U. & Leichmann J. 2010: Two types of ultrapotassic plutonic rocks in the Bohemian Massif – coeval intrusions at different crustal levels. Lithos 115 163–176.

  • Králiková S. Vojtko R. Sliva Ľ. Minár J. Fügenschuh B. Kováč M. & Hók J. 2014: Cretaceous–Quaternary tectonic evolution of the Tatra Mts (Western Carpathians): constraints from structural sedimentary geomorphological and fission track data. Geol. Carpathica 65 307–326.

  • Krár J. Hók J. Frank W. Siman P. Liščák P. & Jánová V. 2002: Shear deformation in granodiorite: Structural 40Ar/39Ar and geotechnical data (Tribeč Mts. Western Carpathians). Slovak Geol. Mag. 8 235–246.

  • Krist E. 1960: Granitic rocks of the Tribeč Mountains. Acta Geol. Geogr. Univ. Comen. Geol. 4 183–230 (in Slovak).

  • Kusiak M. Dunkley D.J. Suzuki K. Kachlík V. Kędzior K. Lekki J. & Opluštil S. 2010: Chemical (non-isotopic) and isotopic dating of Phanerozoic zircon: A case study of durbachite from the Třebíč Pluton Bohemian Massif. Gondwana Res. 17 153–161.

  • Leake B.E. & 21 co-authors 1997: Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association Commission on new minerals and mineral names. Canad. Mineralogist 35 219–246.

  • Ludwig K.R. 2008: Isoplot 3.6. Berkeley Geochronology Center Spec. Publ. 4 1–77.

  • Madarás J. Kohút M. Ivanička J. Kováčik M. & Marsina K. 2004: Geological interpretation of structural borehole RAO-3 (Tribeč). Geol. Práce Spr. 109 41–49 (in Slovak).

  • Maher M. 1986: Geological structure of Czechoslovak Carpathians. Part 1. Paleoalpine units. Veda Bratislava 1–503 (in Slovak).

  • Ondrejka M. Broska I. & Uher P. 2015: The late magmatic to subsolidus T-fO2 evolution of the Lower Triassic A-type rhyolites (Silicic Superunit Western Carpathians Slovakia): Fe-Ti oxythermometry and petrological implications. AGEOS 7 51–61.

  • Petrík I. 2000: Multiple sources of the Western Carpathian Variscan granitoids: a review of Rb/Sr and Sm/Nd data. Geol. Carpathica 51 145–158.

  • Petrík I. & Broska I. 1994: Petrology of two granite types from the Tribeč Mts. Western Carpathians: an example of allanite-magnetite vs. monazite-ilmenite dichotomy. Geol. J. 29 59–78.

  • Petrík I. & Konečný P. 2009: Metasomatic replacement of inherited metamorphic monazite in a garnet granite from the Nízke Tatry Mountains Western Carpathians Slovakia: chemical dating and evidence for disequilibrium melting. Amer. Mineralogist 94 957–974.

  • Petrík I. Broska I. Lipka J. & Siman P. 1995: Granitoid allanite-(Ce): Substitution relations redox conditions and REE distributions (on an example of I-type granitoids Western Carpathians Slovakia). Geol. Carpathica 46 2 79–94.

  • Plašienka D. 1999: Tectonochronology and paleotectonic evolution of the Central Western Carpathians during the Jurassic and Cretaceous. Veda Bratislava 1–127 (in Slovak with English summary).

  • Plašienka D. Grecula P. Putiš M. Kováč M. & Hovorka D. 1997: Evolution and structure of the Western Carpathians: an overview. In: Grecula P. Hovorka D. & Putiš M. (Eds.): Geological evolution of the Western Carpathians. Miner. Slovaca Monograph Bratislava 1–24.

  • Poller U. & Todt W. 2000: U-Pb single zircon dating of granitoids from the High Tatra Mountains (Slovakia): implications for the geodynamic evolution. Trans. Roy. Soc. EdinburghEarth Sci. 91 235–243.

  • Pupin J.P. 1980: Zircon and granite petrology. Contr. Mineral. Petrology 73 207–220.

  • Timmerman M.J. 2008: Palaeozoic magmatism. In: McCann T. (Ed.): The geology of Central Europe. Volume 1. Precambrian and Palaeozoic. Geol. Soc. London 665–748.

  • Tomek Č. 1993: Deep crustal structure beneath the central and inner West Carpathians. Tectonophysics 226 417–431.

  • Tropper P. Manning C.E. & Essene E.J. 2002: The substitution of Al and F in titanite at high pressure and temperature: Experimental constraints on phase relations and solid solution properties. J. Petrology 43 1787–1814.

  • Uher P. & Broska I. 1996: Post-orogenic Permian rocks in the Western Carpathian-Panonian area: Geochemistry mineralogy and evolution. Geol. Carpathica 47 311–321.

  • Uher P. Kohút M. Ondrejka M. Konečný P. & Siman P. 2014: Monazite-(Ce) in Hercynian granites and pegmatites of the Bratislava massif Western Carpathians: compositional variations and Th-U-Pb electron-microprobe dating. AGEOS 6 215–231.

  • Uher P. Mikuš T. Milovský R. Biroň A. Spišiak J. Lipka J. & Jahn J. 2009: Lazulite and Ba Sr Ca K-rich phosphates-sulphates in quartz veins from metaquartzites of Tribeč Mountains Western Carpathians Slovakia: Compositional variations and evolution. Lithos 112 447–460.

  • Vozár J. & Šantavý J. (Eds.) 1999: Atlas of deep seismic profiles of the Western Carpathians and their interpretation. Ministry of Environment Slovak Republic Bratislava 1–76.

  • Watson E.B. & Harrison T.M. 1983: Zircon saturation revised: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 64 295–304.

  • Weinberg R.F.W. & Hasalová P. 2015: Water-fluxed melting of the continental crust: A review. Lithos 212–215 158–188.

  • Whitney D.L. & Evans B.W. 2010: Abbreviations for names of rock-forming minerals. Amer. Mineralogist 95 185–187.

  • Žák J. Verner K. Janoušek V. Holub F. Kachlík V. Finger F. & Hajná J. 2014: A plate-kinematic model for assembly of the Bohemian Massif constrained by structural relationships around granitoid plutons. In: Schulmann K. et al. (Eds.): The Variscan orogeny: extent timescale and the formation of the European crust. Geol. Soc. London Spec. Publ. 405 169–196.

Journal information
Impact Factor

IMPACT FACTOR 2018: 1,699
5-year IMPACT FACTOR: 1,676

CiteScore 2018: 1.76

SCImago Journal Rank (SJR) 2018: 0.627
Source Normalized Impact per Paper (SNIP) 2018: 1.203

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 304 216 6
PDF Downloads 98 69 5