Crystal size and shape distribution systematics of plagioclase and the determination of crystal residence times in the micromonzogabbros of Qisir Dagh, SE of Sabalan volcano (NW Iran)

Open access


The Qisir Dagh igneous complex occurs as a combination of volcanic and intrusive rocks to the south-east of the Sabalan volcano, north-western Iran. Micromonzogabbroic rocks in the region consist of plagioclase, alkaline feldspar and clinopyroxene as the major mineral phases and orthopyroxene, olivine, apatite and opaque minerals as the accessory minerals. Microgranular and microporphyritic textures are well developed in these rocks. Considering the importance of plagioclase in reconstructing magma cooling processes, the size and shape distribution and chemical composition of this mineral were investigated. Based on microscopic studies, it is shown that the 2-dimensional size average of plagioclase in the micromonzogabbros is 538 micrometers and its 3-dimensional shape varies between tabular to prolate. Crystal size distribution diagrams point to the presence of at least two populations of plagioclase, indicating the occurrence of magma mixing and/or fractional crystallization during magma cooling. The chemical composition of plagioclase shows a wide variation in abundances of Anorthite-Albite-Orthoclase (An=0.31–64.58, Ab=29.26–72.13, Or=0.9–66.97), suggesting a complex process during the crystal growth. This is also supported by the formation of antiperthite lamellae, which formed as the result of alkali feldspar exsolution in plagioclase. The calculated residence time of magma in Qisir Dagh, based on 3D crystal size distribution data, and using growth rate G=10−10 mm/s, varies between 457 and 685 years, which indicates a shallow depth (near surface) magma crystallization and subvolcanic nature of the studied samples.


  • Ahmadzadeh Gh., Jahangiri A., Lentz D. & Mojtahedi M. 2010: Petrogenesis of Plio–Quaternary post-collisional ultrapotassic volcanism in NW of Marand, NW Iran. J. Asian Earth Sci. 39, 1–2, 37–50.

  • Alberti A.A., Comin-Chiaramonti P., Di Battistini G., Sinigoi S. & Zerbi M. 1975: On the magmatism of the Savalan volcano (north–west Iran). Rend. Soc. Ital. Mineral. Petrol. 31, 2, 337–350.

  • Alberti A.A., Comin-Chiaramonti P., Sinigoi S., Nicoletti M. & Petrucciani C. 1980: Neogene and Quaternary volcanism in Eastern Azerbaijan (Iran): some K–Ar age determinations and geodynamic implications. Int. J. Earth Sci. 69, 1, 216–225.

  • Alberti A.A., Comin-Chiaramonti P., Di Battistini G., Nicoletti M., Petrucciani C. & Sinigoi S. 1976: Geochronology of the Eastern Azerbaijan volcanic plateau (north–west Iran). Rend. Soc. Ital. Mineral. Petrol. 32, 2, 579–589.

  • Allen M.B., Mark D.F., Kheirkhah M., Barfod D., Hashem Emami M. & Saville C. 2011: 40Ar/39Ar dating of Quaternary lavas in northwest Iran: constraints on the landscape evolution and incision rates of the Turkish–Iranian plateau. Geophys. J. Int. 185, 3, 1175–1188.

  • Amini B. 1987: Geological Map of Meshginshahr, Scale 1:100,000. Geol. Surv. Iran Publ., Tehran.

  • Armienti P., Innoncenti F., Pareschi M.T., Pompilio M. & Roscchi S. 1991: Crystal population density in not stationary volcanic systems: Estimate of olivine growth rate in basalts of Lanzarote (Canary Islands). Miner. Petrology 44, 3–4, 181–196.

  • Armstrong J.T. 1988: Quantitative analysis of silicate and oxide minerals: comparison of Monte Carlo, ZAF, and U(qz) procedures. In: Newbury D.E. (Ed.): Microbeam analysis. Proceedings of the 23rd Annual Conference of the Microbeam Analysis Society. San Francisco Press, San Francisco, 239–246.

  • Azizi H. & Moinevaziri H. 2009: Review of the tectonic setting of Cretaceous to Quaternary volcanism in northwestern Iran. J. Geodyn. 47, 4, 167–179.

  • Berberian M. & King G.C.P. 1981: Towards a paleogeography and tectonic evolution of Iran. Canad. J. Earth Sci. 18, 2, 210–265.

  • Bown M.G. & Gay P. 1971: Lunar antiperthites. Earth Planet. Sci. Lett. 11, 1–5, 23–27.

  • Cashman K.V. 1993: Relationship between plagioclase crystallization and cooling rate in basaltic melts. Contr. Mineral. Petrology 113, 1, 126–142.

  • Cashman K.V. & Marsh B.D. 1988: Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization. II. Makaopuhi lava lake. Contr. Mineral. Petrology 99, 3, 292–305.

  • Cheng L. & Zeng L. 2013: Nature of subvolcanic magma chambers in Emeishan province, China: evidence from quantitative textural analysis of plagioclase megacrysts in the giant plagioclase basalts. IAVCEI 2013 Scientific Assembly, A79.

  • Cox K.G., Bell J.D. & Pankhurst R.J. 1979: The interpretation of igneous rocks. George Allen and Unwin, London, 1–464.

  • Dabiri R., Hashem Emami M., Mollaei H., Chen B., Vosogi Abedini M., Rashidnejad Omran N. & Ghaffari M. 2011: Quaternary post-collision alkaline volcanism NW of Ahar (NW Iran): geochemical constraints of fractional crystallization process. Geol. Carpathica 62, 6, 547–562.

  • Deer W.A., Zussman J. & Howie R.A. 1992: An introduction to the rock-forming minerals. 2nd ed. Prentice Hall, China, 1–712.

  • Diaz Azpiroz M. & Fernandez C. 2003: Characterization of tectono-metamorphic events using crystal size distribution (CSD) diagrams. A case study from the Acebuches metabasites (SW Spain). J. Struct. Geol. 25, 935–947.

  • Didon J. & Gemain Y.M. 1976: Le Sabalan, volcan plio–quaternaire de l’Azerbaidjan oriental (Iran): étude géologique et pétrographique de l’édifice et de son environnement regional. Unpubl. PhD Thesis, Université Scientifique et Médicale de Grenoble, France, 1–166.

  • Dilek Y., Imamverdiyev N. & Altunkaynak S. 2010: Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint. Int. Geol. Rev. 52, 4–6, 536–578.

  • Dostal J. & Zerbi M. 1978: Geochemistry of the Savalan volcano (northwestern Iran). Chem. Geol. 22, 31–42.

  • Gagnevin D., Waight T.E., Daly J.S., Poli G. & Conticelli S. 2007: Insights into magmatic evolution and recharge history in Capraia Volcano (Italy) from chemical and isotopic zoning in plagioclase phenocrysts. J. Volcanol. Geotherm. Res. 168, 1–4, 28–54.

  • Galamghash J., Mousavi Z., Hassanzadeh J. & Schmitt A.K. 2013: Sabalan Volcano, Northwest Iran: Geochemistry and U–Pb zircon geochronology. Geol. Soc. Amer. Meeting, A363–9.

  • Garrido C.J., Kelemen P.B. & Hirth G. 2001: Variation of cooling rate with depth in lower crust formed at an ocean spreading ridge: Plagioclase crystal size distributions in gabbros from the Oman ophiolite. Geochem. Geophys. Geosystems, 2. Doi 10.1029/2000GC000136

  • Gill R. 2011: Igneous rocks and processes, a practical guide. Wiley-Blackwell, Malaysia, 1–472.

  • Hastie W.W., Watkeys M.K. & Aubourg C. 2013: Characterisation of grain-size, shape and orientation of plagioclase in the Rooi Rand dyke swarm, South Africa. Tectonophysics 583, 145–157.

  • Higgins M.D. 1994: Numerical modeling of crystal shapes in thin sections: Estimation of crystal habit true size. Amer. Mineralogist 79, 113–119.

  • Higgins M.D. 1996: Crystal size distributions and other quantitative textural measurements in lavas and tuff from Egmont volcano (Mt. Taranaki), New Zealand. Bull. Volcanol. 58, 2–3, 194–204.

  • Higgins M.D. 2000: Measurement of crystal size distributions. Amer. Mineralogist 85, 1105–1116.

  • Higgins M.D. 2002: A crystal size-distribution study of the Kiglapait layered mac intrusion, Labrador, Canada: evidence for textural coarsening. Contr. Mineral. Petrology 144, 3, 314–330.

  • Higgins M.D. 2006: Verification of ideal semi-logarithmic, lognormal or fractal crystal size distributions from 2D datasets. J. Volcanol. Geotherm. Res. 154, 1–2, 8–16.

  • Innocenti F., Mazzuoli R., Pasquare G., Radicati Di Brozolo F. & Villari L. 1982: Tertiary and quaternary volcanism of the Erzurumkars area (Eastern Turkey): Geochronological data and geodynamic evolution. J. Volcanol. Geotherm. Res. 13, 3–4, 223–240.

  • Innocenti S., Ann del Marmol M., Voight B., Andreastuti S. & Furman T. 2013: Textural and mineral chemistry constraints on evolution of Merapi volcano, Indonesia. J. Volcanol. Geotherm. Res. 261, 20–73.

  • Jahangiri A. 2007: Post-collisional Miocene adakitic volcanism in NW Iran: Geochemical and geodynamic implications. J. Asian Earth Sci. 30, 3–4, 433–447.

  • Jamali H., Yaghubpur A., Mehrabi B., Dilek Y., Daliran F. & Meshkani A. 2012: Petrogenesis and tectono-magmatic setting of Meso–Cenozoic magmatism in Azerbaijan province, Northwestern Iran. In: Al-Juboury A. (Ed.): Petrology – new perspectives and applications. Intech, 39–56. ISBN: 978–953–307–800–7

  • Jerram D.A., Mock A., Davis G.R., Field M. & Brown R.J. 2009: 3D crystal size distributions: A case study on quantifying olivine populations in kimberlites. Lithos 112, S1, 223–235.

  • Kheirkhah M. & Mirnejad H. 2014: Volcanism from an active continental collision zone: a case study on most recent lavas within Turkish–Iranian plateau. J. Tethys 2, 2, 81–92.

  • Kouchi A., Tsuchiyama A. & Sunagawa I. 1986: Effect of stirring on crystallization kinetics of basalt: texture and element partitioning. Contr. Mineral. Petrology 93, 4, 429–438.

  • Lambert R.S.J., Holland J.G. & Owen P.F. 1974: Chemical petrology of a suit of calc-alkaline lavas from Mount Ararat, Turkey. J. Geology 82, 4, 419–438.

  • Marsh B.D. 1988: Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization. I. Theory. Contr. Mineral. Petrology 99, 3, 277–291.

  • McQuarrie N., Stock J.M., Verdel C. & Wernicke B.P. 2003: Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophys. Res. Lett. 30, 20. Doi 10.1029/2003GL017992

  • Morgan D.J. & Jerram D.A. 2006: On estimating crystal shape for crystal size distribution analysis. J. Volcanol. Geotherm. Res. 154, 1–2, 1–7.

  • Ngonge E.D., Archanjo C.J. & Hollanda M.H.B.M. 2013: Plagioclase crystal size distribution in some mesozoic tholeiitic dykes in Cabo Frio-Buzios, Rio de Janeiro, Brazil. J. Volcanol. Geotherm. Res. 255, 26–42.

  • Parsons I. & Brown W.L. 1983: A TEM and microprobe study of a two-perthite alkali gabbro: implications for the ternary feldspar system. Contr. Mineral. Petrology 82, 1, 1–12.

  • Pazirandeh M. 1973: Distribution of volcanic rocks in Iran and a preliminary discussion of their relationship to tectonics. Bull. Volcanol. 37, 4, 573–585.

  • Pourkhorsandi H. 2014: Geochemistry of subvolcanic rocks from Qisir Dagh, South–East of Savalan volcano, (North–West) Iran. Unpubl. M.Sc. Thesis, University of Tehran, Iran, 1–145 (in Farsi).

  • Randolph A.D. & Larson M.A. 1971: Theory of particulate processes: Analysis and techniques of continuous crystallization. Academic Press, New York, 1–268.

  • Ruprecht P. & Wörner G. 2014: Variable regimes in magma systems documented in plagioclase zoning patterns: El Misti stratovolcano and Andahua monogenetic cones. J. Volcanol. Geotherm. Res. 165, 3–4, 142–162.

  • Ruttner A. & Stöcklin J. 1967: Geological Map of Iran, Scale 1: 100,000. Geol. Surv. Iran Publ., Tehran.

  • Sahagian D.L. & Proussevitch A.A. 1998: 3D particle size distributions from 2D observations: stereology for natural applications. J. Volcanol. Geotherm. Res. 84, 3–4, 173–196.

  • Salisbury M.J., Bohrson W.A., Clynne M.A., Ramos F.C. & Hoskin P. 2008: Multiple plagioclase crystal populations identified by crystal size distribution and in situ chemical data: implications for timescales of magma chamber processes associated with the 1915 eruption of Lassen Peak, CA. J. Petrology 49, 10, 1755–1780.

  • Seaman S.J. 2000: Crystal clusters, feldspar glomerocrysts, and magma envelopes in the Atascosa Lookout lava flow, Southern Arizona, USA: recorders of magmatic events. J. Petrology 41, 5, 693–716.

  • Sen S.K. 1959: Potassium content of natural plagioclases and the origin of antiperthites. J. Geology 67, 5, 479–495.

  • Stöcklin J. 1968: Structural history and tectonics of Iran, a review. Amer. Assoc. Petrol. Geol. Bull. 52, 7, 1229–1258.

  • Takin M. 1972: Iranian geology and continental drift in the Middle East. Nature 235, 5334, 147–150.

  • Trifonov V.G., Ivanova T.P. & Bachmanov D.M. 2012: Evolution of the central Alpine–Himalayan belt in the Late Cenozoic. Russ. Geol. Geophys. 53, 3, 221–233.

  • Underwood E.E. 1973: Quantitative stereology for microstructural analysis. In: McCall J.L. & Mueller W.M. (Eds.): Microstructural analysis, tools and techniques. Plenum Press, New York, 35–66.

  • Ustunisik G., Kilinc A. & Nielsen R.L. 2014: New insights into the processes controlling compositional zoning in plagioclase. Lithos 200–201, 80–93.

  • Van der Zwan F.M., Chadwick J.P. & Troll V.R. 2013: Textural history of recent basaltic-andesites and plutonic inclusions from Merapi volcano. Contr. Mineral. Petrology 166, 1, 43–63.

  • Vernon R.H. 2004: A practical guide to rock microstructures. Cambridge University Press, New York, 1–655.

  • Vinet N. & Higgins M.D. 2010: Magma solidification processes beneath Kilauea volcano, Hawaii: a quantitative textural and geochemical study of the 1969–1974 Mauna Ulu lavas. J. Petrology 51, 6, 1297–1332.

  • Winkeler H.G.F. 1949: Crystallization of basaltic magma as recorded by variation of crystal-size in dikes. Mineral. Mag. 28, 557–574.

  • Yilmaz Y., Moorbath F. & Mitchell J.G. 1990: Genesis of collision volcanism in Eastern Anatolia, Turkey. J. Volcanol. Geotherm. Res. 44, 1–2, 189–229.

  • Yu H., Xu J., Lin C., Shi L. & Chen X. 2012: Magmatic processes inferred from chemical composition, texture and crystal size distribution of the Heikongshan lavas in the Tengchong volcanic eld, SW China. J. Asian Earth Sci. 58, 1–15.

  • Zingg Th. 1935: Beitrag zur Schotteranalyse. Unpubl. PhD Thesis, Universität Zürich, Switzerland, 1–140.

Geologica Carpathica

The Journal of Geological Institute of Slovak Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 1.358
5-year IMPACT FACTOR: 1.402

CiteScore 2016: 1.49

SCImago Journal Rank (SJR) 2016: 0.697
Source Normalized Impact per Paper (SNIP) 2016: 0.957


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 18 18 12
PDF Downloads 2 2 1