Thermal history of the Podhale Basin in the internal Western Carpathians from the perspective of apatite fission track analyses

Open access

Abstract

The thermal history of the Paleogene Podhale Basin was studied by the apatite fission track (AFT) method. Twenty four Eocene-Oligocene sandstone samples yielded apparent ages from 13.8 ± 1.6 to 6.1 ± 1.4 Ma that are significantly younger than their stratigraphic age and thus point to a post-depositional resetting. The thermal event responsible for the age resetting is interpreted as a combination of heating associated with mid-Miocene volcanism and variable thickness of Oligocene and potentially also Miocene sediments. Extending the mid-Miocene thermal event found in the Inner Carpathians into the Podhale Basin as a likely heat source suggests that the amount of denudation in the Podhale Basin determined only on the basis of heat related to the thickness of sedimentary sequence might have be significantly overestimated. Two samples from the western part of the basin that yielded 31.0 ± 4.3 and 26.9 ± 4.7 Ma are interpreted as having mixed ages resulting from partial resetting in temperature conditions within the AFT partial annealing zone. This observation agrees very well with reported vitrinite reflectance and illite-smectite thermometry, which indicate a systematic drop of the maximum paleotemperatures towards the western side of the basin.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Anczkiewicz A.A. Zattin M. & Środoń J. 2005: Cenozoic uplift of the Tatras and Podhale Basin from the perspective of the apatite fission track analyses. Mineral. Soc. Pol. Spec. Pap. 25 261-264.

  • Andrusov D. & Köhler E. 1963: Nummulites facies et development pretectonique des Karpates Occidentales Centrales au Paleogene. Geol. Sbor. Slov. Acad. Vied. 14 1 175-192.

  • Bac-Moszaszwili M. & Gąsienica-Szostak M. 1990: The Polish Tatra. Geological guide for tourists. Wydaw. Geol. Warszawa 1-159 (in Polish).

  • Barbarand J. Carter A. Wood I. & Hurford T. 2003: Compositional and structural control of fission-track annealing in apatite. Chem. Geol. 198 107-137.

  • Birkenmajer K. 1986: Stages of structural evolution of the Pieniny Klippen Belt Carpathians. Stud. Geol. Pol. 88 7-32.

  • Birkenmajer K. 2001: Pieniny Klippen Belt. Introduction. In: Paulo A. & Krobicki M. (Eds.): 12th Meeting of the Association of European Geological Societies 10-15 September Krakow. Field Trip Guide 127-138.

  • Birkenmajer K. & Pécskay Z. 1999: K-Ar dating of the Miocene andesite intrusions Pieniny Mts West Carpathians Poland. Bull. Pol. Acad. Sci. Earth Sci. 47 155-169.

  • Birkenmajer K. & Pécskay Z. 2000: K-Ar dating of the Miocene andesite intrusions Pieniny Mts West Carpathians: a supplement. Stud. Geol. Pol. 117 7-25.

  • Botor D. Dunkl I. Rauch-Włodarska M. & von Eynatten H. 2006: Attempt to dating of accretion in the West Carpathian Flysch Belt: apatite fission track thermochronology of tuff layers. Proc. of VI Internat. Conference. Central European Tectonic Studies Zakopane 19-22. 04. 2006. Geolines 41-43.

  • Botor D. Dunkl I. Rauch M. & von Eynatten H. 2011: Timing of tectonic subsidence accretion and exhumation of the Western Carpathian Flysch by apatite fission track and (U-Th)/He thermochronology. Europen Geosciences Union General Assembly(EGU) Vienna 3-8. 04. 2012.

  • Burchart J. 1972: Fission-track age determination of accessory apatite from the Tatra Mountains Poland. Earth Planet. Sci. Lett. 15 418-422.

  • Burtner R.L. Nigrini A. & Donelick R.A. 1994: Thermochronology of Lower Cretaceous source rocks in the Idaho-Wyoming thrust belt. AAPG Bull. 78 1613-1636.

  • Csontos L. Nagymarosy A. Horvath F. & Kováč M. 1992: Tertiary evolution of the Intra-Carpathian area: a model. Tectonophysics 208 221-241.

  • Danišík M. Kohút M. Dunkl I. Hraško L. & Frisch W. 2008: Apatite fission track and (U-Th)/He thermochronology of the Rochovce granite (Slovakia) - implications for the thermal evolution of the Western Carpathian-Pannonian region. SwissJ. Geosci. 101 225-33.

  • Danišík M. Kohút M. Broska I. & Frisch W. 2010: Thermal evolution of the Malá Fatra Mountains (Central Western Carpathians): insights from zircon and apatite fission track thermochronology. Geol. Carpathica 61 19-27.

  • Danišík M. Kohút M. Evans N.J. & Mcdonald B.J. 2012: Eo-Alpine metamorphism and the ‘mid-Miocene thermal event’ in the Western Carpathians (Slovakia): new evidence from multiple thermochronology. Geol. Mag. 149 158-171.

  • Donelick R.A. O’Sullivan P.B. & Ketcham R.A. 2005: Apatite fission- track analysis. Rev. Mineral. Geochem. 58 49-94.

  • Dumitru T.A. 1993: A new computer automated microscope stage system for fission-track analysis. Nucl. Tracks and Radiat. Meas. 21 575-580.

  • Dunkl I. 2002: TRACKKEY: A Windows program for calculation and graphical presentation of fission track data. Comput. Geosci. 28 2 3-12.

  • Galbraith R.F. 1981: On statistical models for fission track counts. Math. Geol. 13 471-438.

  • Galbraith R.F. 1990: The radial plot; graphical assessment of spread in ages. Nucl. Tracks and Radiat. Meas. 17 207-214.

  • Galbraith R.F. & Laslett G.M. 1993: Statistical models for mixed fission track ages. Nucl. Tracks and Radiat. Meas. 21 459-470.

  • Garecka M. 2005: Calcareous nannoplankton from the Podhale Flysch (Oligocene-Miocene Inner Carpathians Poland). Stud. Geol. Pol. 124 353-369.

  • Gedl P. 2000: Biostratigraphy and Palaeogene (Inner Carpathians Poland) in the light of palynological studies. Part I. [Biostratygrafia i paleośrodowisko paleogenu Podhala w świetle badań palinospastycznych. Część I.] Stud. Geol. Pol. 117 69-154.

  • Gleadow A.J.W. 1981: Fission track dating methods: What are the real alternatives? Nuclear Tracks 5 3-14.

  • Green P.F. 1981: ‘Track-in track’ length measurements in annealed apatites. Nuclear Tracks 5 12-18.

  • Gross P. Köhler E. & Samuel O. 1984: A new lithostratigraphic subdivision of the Central Carpathian Paleogene. Geol. PráceSpr. 81 103-117.

  • Hammerschmidt G. Wagner A. & Wagner M. 1984: Radiometric dating on research drill core Urach III: a contribution to its geothermal history. J. Geophys. 54 97-105.

  • Hurai V. Świerczewska A. Marko F. Tokarski A. & Hrušecký I. 2000: Paleofluid temperatures and pressures in Tertiary accretionary prism of the Western Carpathians. Slovak Geol. Mag. 6 194-7.

  • Hurford A.J. & Green P.F. 1983: The age calibration of fissiontrack dating. Isot. Geosci. 1 285-317.

  • Janočko J. Gross P. Jacko S. Buček S. Karoli S. Žec B. Polák M. Rakús M. Potfaj M. & Halouzka R. 2000: Geological map of the Spišska Magura region. 1: 50000. Ministerstvo Životného Prostredia Slovenskej Republiky Štátny Geologický Ústav Dionýza Štúra - Bratislava.

  • Kázmer M. Dunkl I. Frisch W. Kuhlemann J. & Ozsvárt P. 2003: The Paleogene forearc basin of the Eastern Alps and Western Carpathians: subducion erosion and basin evolution. J. Geol. Soc.London 160 413-428.

  • Ketcham R.A. Carter A. Donelick R.A. Barbarand J. & Hurford A.J. 2007: Improved modeling of fission track annealing in apatite. Amer. Mineralogist 92 799-810.

  • Kępińska B. 1995: The temperature of the main aquifer geothermal field of the Podhale Basin. Technika Poszukiwań Geologicznych. Geosynoptyka i Geotermia 6 3-14 (in Polish).

  • Kępińska B. 1997: The geological-geothermal model of the Podhale Basin. Studia Rozprawy Monografie IGSMiE PAN wKrakowie 48 1-111.

  • Kępińska B. 2006: Thermal and hydrothermal conditions of the Podhale geothermal system. Studia Rozprawy MonografieIGSMiE PAN w Krakowie 135 1-112 (in Polish English summary).

  • Kotarba M. 2003: History of illite/smectite diagenesis in claystones of the Western Carpathians along Kraków-Zakopane profile. PhD Thesis Inst. Geol. Sci. Pol. Acad. Sci. 1-198 (in Polish).

  • Kováč M. Král J. Márton E. Plašienka D. & Uher P. 1994: Alpine uplift history of the Central Western Carpathians: geochronological paleomagnetic sedimentary and structural data. Geol. Carpathica 45 83-96.

  • Král M. Lisol J. & Janáček J. 1987: Geothermal Research in Slovakia Report 1981-1985. Manuscript Geofyzika Brno 1-186 (in Slovak).

  • KráL J. 1977: Fission track ages of apatites from some granitoid rocks in West Carpathians. Geol. Carpathica 28 269-276.

  • Marynowski L. & Gawęda A. 2005: Correlation between biomarkers and thermal maturity of the organic matter from the Paleogene sedimentary rocks of the Podhale trough. Mineral. Soc. Pol.Spec. Pap. 25 329-332.

  • Mazzoli S. Jankowski L. Szaniawski R. & Zattin M. 2010: Low-T thermochronometric evidence for post-thrusting ( < 11 Ma) exhumation in the Western Outer Carpathians Poland. C.R. Geosci. 342 162-169.

  • Nemčok M. & Nemčok J. 1994: Late Cretaceous deformation of the Pieniny Klippen Belt West Carpathians. Tectonophysics 239 81-109.

  • Nemčok M. Marko F. Kováč M. & Fodor L. 1989: Neogene tectonics and paleostress changes in the Czechoslovakian part of the Vienna basin. Jb. Geol. B.-A 132 443-458.

  • Nemčok M. Keith J.F. & Neese D.G. 1996: Development and hydrocarbon potential of the Central Carpathian Paleogene Basin West Carpathians Slovak Republic. In: Ziegler P.A. & Horvath F. (Eds.): Peri-Tethys Memoir 2: Structure and prospects of Alpine Basins and Forelands. Mem. Nat. Mus. Nat. Hist. 170 Bratislava 321-342.

  • Olszewska B.W. & Wieczorek J. 1989: The Paleogene of the Podhale Basin (Polish Inner Carpathians) - micropaleonthological perspective. Przegl. Geol. 46 721-728.

  • Pécskay Z. Lexa J. Szakács A. Seghedi I. Balogh K. Konečný V. Zelenka T. Kovacs M. Póka T. Fülöp A. Márton E. Panaiotu C. & Cvetković V. 2006: Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geol. Carpathica 57 511-30.

  • Poprawa P. & Marynowski L. 2005: Thermal history of the Podhale Trough (northern part of the Central Carpathian Paleogene Basin) - preliminary results from 1-D maturity modeling. Mineral. Soc. Pol. Spec. Pap. 25 352-355.

  • Radomski A. 1958: The sedimentological character of the Podhale flysch. Acta Geol. Pol. 8 335-409 (in Polish).

  • Ratschbacher L. Frisch W. Linzer H.G. Sperner B. Meschede M. Decker K. Nemčok M. Nemčok J. & Grygar R. 1993: The Pieniny Klippen Belt in the Western Carpathians of northeastern Slovakia: Structural evidence for transpression. Tectonophysics 226 471-483.

  • Roca E. Bessereau G. Jawor E. Kotarba M. & Roure F. 1995: Pre- Neogene evolution of the Western Carpathians: Constraints from the Bochnia-Tatra Mountains section (Polish Western Carpathians). Tectonics 14 855-873.

  • Rögl F. 1996: Stratigraphic correlation of the Paratethys Oligocene and Miocene. Mitt. Gesell. Geol. Bergbaustud. Österr. 41 65-73.

  • Soták J. Bebej J. & Biroň A. 1996: Detrital analysis of the Paleogene flysch deposits of the Levoca Mts. evidence for sources and paleogeography. Slovak Geol. Mag. 3 4 345-349.

  • Soták J. Pereszlényi M. Marschalko R. Milička J. & Starek G. 2001: Sedimentology and hydrocarbon habitat of the submarine- fan deposits of the Central Carpathian Paleogene Basin (NE Slovakia). Mar. Petrol. Geol. 18 87-114.

  • Sperner B. Ratschbacher L. & Nemčok M. 2002: Interplay between subduction retreat and lateral extrusion: Tectonics of the Western Carpathians. Tectonics 21 6 1-24.

  • Struzik A. Zattin M. & Anczkiewicz R. 2002: Timing of uplift and exhumation of the Polish Western Carpathians. Geotemas 4 151-154.

  • Szabó Cs. Harangi S. & Csontos L. 1992: Review of Neogene and Quaternary volcanism of the Carpathian Pannonian Region. Tectonophysics 208 243-256.

  • Śmigielski M. Krzywiec P. Sinclair H. Persano C. Stuart F. Aleksandrowski P. & Pisaniec K. 2010: Mechanisms of uplift and erosion in the Carpathian thrust wedge and foreland basin: low temperature thermochronology of the Tatra Mountains southern Poland. 12-th International Conference on ThermochronologyGlasgow 16-20 August 2010 279.

  • Śmigielski M. Krzywiec P. Pisaniec K. Stuart F. Persano C. Sinclair H. Oszczypko N. & Sobien K. 2011: Inversion of the Central Carpathian Basin constrained using low temperature thermochronology and its implications for Carpathian orogenesis. Geophys. Res. Abstr. 13 12938.

  • Śmigielski M. Stuart F.M. Krzywiec P. Persano C. Sinclair H.D. Pisaniec K. & Sobien K. 2012: Dating the tectonic evolution of the Northern Carpathians (Poland) by zircon and apatite low temperature thermochronology. 13-th International Conferenceon Thermochronology Guilin 24-28 August 2012 78.

  • Środoń J. Kotarba M. Biroň A. Such P. Clauer N. & Wójtowicz A. 2006: Diagenetic history of the Podhale-Orava Basin and the underlying Tatra sedimentary structural units (Western Carpathians): evidence from XRD and K-Ar of illite-smectite. Clay Miner. 41 751-774.

  • Tari G. Horváth F. & Rumpler J. 1992: Styles of extension in the Pannonian Basin. Tectonophysics 208 203-219.

  • Wagner G. & Van den Haute P. 1992: Fission-track dating. KluwerAcademy Dordrecht 285.

  • Wagner M. 2011: Petrologic studies and diagenetic history of coaly matter in the Podhale flysch sediments Southern Poland. Ann. Soc. Geol. Pol. 81 173-183.

  • Westwalewicz-Mogilska E. 1986: New insights into the genesis of Podhale Basin flysch sediments. Przegl. Geol. 12 690-698 (in Polish).

  • Zattin M. Andreucci B. Jankowski L. Mazzoli S. & Szaniawski R. 2011: Neogene exhumation in the Outer Western Carpathians. Terra Nova 00 1-9.

  • Żytko K. Zając R. Gucik S. Ryłko W. Oszczypko N. Garlicka I. Nemčok J. Elíáš M. Menčík E. & Stráník Z. 1989: Map of the tectonic elements of the Western Outer Carpathians and their foreland 1: 500000. In: Poprawa D. & Nemčok J. (Eds.): Geological Atlas of the Western Outer Carpathians and their foreland. Państwowy Instytut Geologiczny Warszawa

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.699
5-year IMPACT FACTOR: 1.676

CiteScore 2018: 1.76

SCImago Journal Rank (SJR) 2018: 0.627
Source Normalized Impact per Paper (SNIP) 2018: 1.203

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 310 151 8
PDF Downloads 122 69 2