Shallow-seated controls on the evolution of the Upper Pliocene Kopasz-hegy nested monogenetic volcanic chain in the Western Pannonian Basin (Hungary)

Gábor Kereszturi and Károly Németh 1
  • 1 Volcanic Risk Solutions, CS-INR, Massey University, PO Box 11 222, Palmerston North, New Zealand
  • 2 Geological Institute of Hungary, Stefánia út 14, H-1143, Budapest, Hungary
  • 3 Department of Geology and Mineral Deposits, University of Miskolc, Hungary

Shallow-seated controls on the evolution of the Upper Pliocene Kopasz-hegy nested monogenetic volcanic chain in the Western Pannonian Basin (Hungary)

Monogenetic, nested volcanic complexes (e.g. Tihany) are common landforms in the Bakony-Balaton Highland Volcanic Field (BBHVF, Hungary), which was active during the Late Miocene up to the Early Pleistocene. These types of monogenetic volcanoes are usually evolved in a slightly different way than their "simple" counterparts. The Kopasz-hegy Volcanic Complex (KVC) is inferred to be a vent complex, which evolved in a relatively complex way as compared to a classical "sensu stricto" monogenetic volcano. The KVC is located in the central part of the BBHVF and is one of the youngest (2.8-2.5 Ma) volcanic erosion remnants of the field. In this study, we carried out volcanic facies analysis of the eruptive products of the KVC in order to determine the possible role of changing magma fragmentation styles and/or vent migration responsible for the formation of this volcano. The evolution of the KVC started with interaction of water-saturated Late Miocene (Pannonian) mud, sand, sandstone with rising basaltic magma triggering phreatomagmatic explosive maar-diatreme forming eruptions. These explosive eruptions in the northern part of the volcanic complex took place in a N-S aligned paleovalley. As groundwater supply was depleted during volcanic activity the eruption style became dominated by more magmatic explosive-fragmentation leading to the formation of a mostly spatter-dominated scoria cone that is capping the basal maar-diatreme deposits. Subsequent vent migration along a few hundred meters long fissure still within the paleovalley caused the opening of the younger phreatomagmatic southern vent adjacent to the already established northern maar. This paper describes how change in eruption styles together with lateral migration of the volcanism forms an amalgamated vent complex.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Auer A., Martin U. & Németh K. 2007: The Fekete-hegy (Balaton Highland Hungary) "soft-substrate" and "hard-substrate" maar volcanoes in an aligned volcanic complex — Implications for vent geometry, subsurface stratigraphy and the paleoenvironmental setting. J. Volcanol. Geotherm. Res. 159, 225-245.

  • Agustín-Flores J., Siebe C. & Guilbaud M.-N. 2011: Geology and geochemistry of Pelagatos, Cerro del Agua, and Dos Cerros monogenetic volcanoes in the Sierra Chichinautzin Volcanic Field, south of México City. J. Volcanol. Geotherm. Res. 201, 143-162.

  • Balogh K. & Németh K. 2005: Evidence for the Neogene small-volume intracontinental volcanism in the Western Hungary: K/Ar geochronology of the Tihany Maar Volcanic Complex. Geol. Carpathica 56, 91-99.

  • Balogh K. & Pécskay Z. 2001: K/Ar and Ar/Ar geochronological studies in the Pannonian-Carpathians-Dinarides (PANCARDI) region. Acta Geol. Hung. 44, 281-299.

  • Balogh K., Árva-Sós E., Pécskay Z. & Ravasz-Baranyai L. 1986: K/Ar dating of post-Sarmatian alkali basaltic rocks in Hungary. Acta Mineral. Petrogr. 27, 75-93.

  • Balogh K., Németh K., Itaya T., Molnár F., Stewart R., Thanh N. X., Hyodo H. & Daróczi D. 2010: Loss of 40 Ar(rad) from leucite-bearing basanite at low temperature: implications on K/Ar dating. Cent. Eur. J. Geosci. 2, 385-398.

  • Bence G., Bihari D. & Lantos M. 1987: Geomagnetic measurements to detect basalt volcanic vents in the Balaton Highland. Magy. Áll. Földt. Intéz. Évi Jelent. 1988-ról (1 rész), 363-370 (in Hungarian).

  • Bence G., Budai T. & Csillag G. 1999: Foreland basins. In: Budai T. & Csillag G. (Eds.): Geology of the Balaton Highland — Explanation of the Geological Map of the Balaton Highland, 1:50,000. Geol. Inst. Hung., Budapest 197, 207-211.

  • Brenna M., Cronin S. J., Smith I. E. M., Sohn Y. K. & Németh K. 2010: Mechanisms driving polymagmatic activity at a monogenetic volcano, Udo, Jeju Island, South Korea. Contr. Mineral. Petrology. 160, 6, 931-950.

  • Budai T. & Csillag G. 1998: Geology of the central part of the Balaton Highland (Transdanubian Range, Hungary). A Bakony Természettudományi Kutatásának Eredményei 22, 1-118 (in Hungarian).

  • Budai T., Csillag G., Dudko A. & Koloszár L. 1999: Geological map of Balaton Highland (1:50,000). In: Budai T. & Csillag G. (Eds.): Geology of the Balaton Highland — Explanation of the Geological Map of the Balaton Highland, 1:50,000. Geol. Inst. Hung., Budapest, 197.

  • Clarke H., Troll V. R. & Carracedo J. C. 2009: Phreatomagmatic to Strombolian eruptive activity of basaltic cinder cones: Montaña Los Erales, Tenerife, Canary Islands. J. Volcanol. Geotherm. Res. 180, 225-245.

  • Corazzato C. & Tibaldi A. 2006: Fracture control on type, morphology and distribution of parasitic volcanic cones: an example from Mt. Etna, Italy. J. Volcanol. Geotherm. Res. 158, 177-194.

  • Crowe B. M. & Fisher R. V. 1973: Sedimentary structures in base surge deposits with special reference to cross bedding; Ubehebe Crater, Death Valley, California. Geol. Soc. Amer. Bull. 84, 663-682.

  • Csillag G. 1999: Platform carbonates. In: Budai T. & Csillag G. (Eds.): Geology of the Balaton Highland — Explanation of the Geological Map of the Balaton Highland, 1:50,000. Geol. Inst. Hung., Budapest, 197, 196-199.

  • Csillag G. 2003: Geological nature protection evaluation: example from the Káli Basin, Hungary. PhD. Thesis, 1-139 (in Hungarian).

  • Csillag G. 2004: Geomorphologic levels of the Kál Basin and its vicinity. Magy. Áll. Földt. Intéz. Évi Jelent., 2004-ről, 95-110 (in Hungarian with English abstract).

  • Csillag G., Gondárné Sőregi K. & Koloszár L. 1994: Geological nature protection: methodological studies from the Káli Basin, Hungary. [A földtani felépítés meghatározó szerepe a Káli-medence felszínalatti vízrendszerében.] A Kárpát-medence vízkészlete és vízi környezetvédelme kongresszus (Eger), 136-156 (in Hungarian).

  • Csillag G., Gondárné Sőregi K., Kiss J., Koloszár L., Szeiler R., Tullner T. & Vértesy L. 1998: Földtani természetvédelem: módszertani vizsgálatok a Káli-medencében. Földt. Kutatás 35, 9-18 (in Hungarian).

  • Fisher R. V. & Schmincke H.-U. 1984: Pyroclastic rocks. Springer-Verlag, Berlin, 1-472.

  • Fodor L., Csillag G., Németh K., Budai T., Cserny T., Martin U., Brezsnyánszky K. & Dewey J. 2002: Tectonic development, morphotectonics and volcanism of the Transdanubian Range: a field guide. In: Fodor L. & Brezsnyánszky K. (Eds.): Proceedings of the workshop on "Application of GPS in plate tectonics, in research on fossil energy resources and in earthquake hazard assessment". Occas. Pap. Geol. Inst. Hung., Budapest, 204, 59-86.

  • Gondár K. & Gondárné Sőregi K. 1999: Hydrogeology — The Balaton Highland. In: Budai T. & Csillag G. (Eds.): Geology of the Balaton Highland — Explanation of the Geological Map of the Balaton Highland, 1:50,000. Geol. Inst. Hung., Budapest, 197, 235-239.

  • Head J. W. & Wilson L. 1987: Lava fountain heights at Pu'u ‘O'o, Kilauea, Hawaii: Indicators of amount and variations of exsolved magma volatiles. J. Geophys. Res. 92, 13715-13719.

  • Ingram R. L. 1954: Terminology for thickness of stratification and parting units in sedimentary rocks. Geol. Soc. Amer. Bull. 65, 937-938.

  • Kereszturi G., Csillag G., Németh K., Sebe K., Balogh K. & Jáger V. 2010: Volcanic architecture, eruption mechanism and landform evolution of a Pliocene intracontinental basaltic polycyclic monogenetic volcano from the Bakony-Balaton Highland Volcanic Field, Hungary. Cent. Eur. J. Geosci. 2, 362-384.

  • Kereszturi G., Németh K., Csillag G., Balogh K. & Kovács J. 2011: The role of external environmental factors in changing eruption styles of monogenetic volcanoes in a Mio/Pleistocene continental volcanic field in western Hungary. J. Volcanol. Geotherm. Res. 201, 227-240.

  • Lorenz V. 1973: On the formation of maars. Bull. Volcanol. 37, 183-204.

  • Lorenz V. 1984: Explosive volcanism of the West Eifel volcanic field, Germany. In: Kornprobat J. (Ed.): Kimberlites. I. Kimberlites and related rocks. Elsevier, Amsterdam, 299-307.

  • Lorenz V. 1986: On the growth of maar and diatremes and its relevance to the formation of tuff rings. Bull. Volcanol. 48, 265-274.

  • Lorenz V. 2007: Syn- and posteruptive hazards of maar-diatreme volcanoes. J. Volcanol. Geotherm. Res. 159, 285-312.

  • Lorenz V. & Kurszlaukis S. 2007: Root zone processes in the phreatomagmatic pipe emplacement model and consequences for the evolution of maar-diatreme volcanoes. J. Volcanol. Geotherm. Res. 159, 4-32.

  • Lorenz V. & Zimanowski B. 2000: Volcanology of the West Eifel maars. In: Neuffer F. O. & Lutz H. (Eds.): Field trip guidebook. International Maar Conference, (17-27 August 2000, Daun, Germany). Mainz, 5-51.

  • Magyar I., Geary D. H. & Müller P. 1999: Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europe. Palaeogeogr. Palaeoclimatol. Palaeoecol. 147, 151-167.

  • Martin U. & Németh K. 2004: Mio/Pliocene Phreatomagmatic Volcanism in the Western Pannonian Basin. Budapest, 1-192.

  • Mattsson H. B. & Höskuldsson Á. 2011: Contemporaneous phreatomagmatic and effusive activity along the Hverfjall eruptive fissure, north Iceland: Eruption chronology and resulting deposits J. Volcanol. Geotherm. Res. 201, 241-252.

  • Müller G. & Veyl G. 1957: The birth of Nilahue, a new maar type volcano at Rininahue, Chile. 20th International Geological Congress Sect. I, Vol. 2, Cenozoic Volcanism, 375-396.

  • Needham A. J., Lindsay J. M., Smith I. E. M., Augustinus P. & Shane P. A. 2011: Sequential eruption of alkaline and sub-alkaline magmas from a small monogenetic volcano in The Auckland Volcanic Field, New Zealand. J. Volcanol. Geotherm. Res. 201, 126-142.

  • Németh K. & Cronin S. J. 2011: Drivers of explosivity and elevated hazard in basaltic fissure eruptions: The 1913 eruption of Ambrym Volcano, Vanuatu (SW-Pacific). J. Volcanol. Geotherm. Res. 201, 194-209.

  • Németh K. & Martin U. 1999: Small-volume volcaniclastic flow deposits related to phreatomagmatic explosive eruptive centres near Szentbékkálla, Bakony-Balaton Highland Volcanic Field, Hungary: Pyroclastic flow or hydroclastic flow? Földt. Közl. 129, 393-417.

  • Németh K., Martin U. & Harangi S. 2001: Miocene phreatomagmatic volcanism at Tihany (Pannonian Basin, Hungary). J. Volcanol. Geotherm. Res. 111, 111-135.

  • Németh K., Martin U. & Csillag G. 2003: Eroded phreatomagmatic crater and vent filling pyroclastic deposits (diatremes) from the Bakony - Balaton Highland Volcanic Field, Hungary). Magy. Áll. Földt. Intéz. Évi Jelent., 2000-ről, 83-99 (in Hungarian).

  • Németh K., Cronin S. J., Haller M. J., Brenna M. & Csillag G. 2010: Modern analogues for Miocene to Pleistocene alkali basaltic phreatomagmatic fields in the Pannonian Basin: "soft-substrate" to "combined" aquifer controlled phreatomagmatism in intraplate volcanic fields. Cent. Eur. J. Geosci. 2, 339-361.

  • Németh K., Risso C., Nullo F. & Kereszturi G. 2011: The role of collapsing and rafting of scoria cones on eruption style changes and final cone morphology: Los Morados scoria cone, Mendoza, Argentina. Cent. Eur. J. Geosci. DOI: 10.2478/s13533-011-0008-4

  • Ort M. H. & Carrasco-Núñez G. 2009: Lateral vent migration during phreatomagmatic and magmatic eruptions at Tecuitlapa Maar, east-central Mexico. J. Volcanol. Geotherm. Res. 181, 67-77.

  • Pécskay Z., Lexa J., Szakács A., Seghedi I., Balogh K., Konečný V., Zelenka T., Kovacs M., Póka T., Fülöp A., Márton E., Panaiotu C. & Cvetkovic V. 2006: Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geol. Carpathica 57, 511-530.

  • Ross P.-S., Delpit S., Haller M. J., Németh K. & Corbella H. 2011: Influence of the substrate on maar-diatreme volcanoes — an example of a mixed setting from the Pali Aike volcanic field, Argentina. J. Volcanol. Geotherm. Res. 201, 253-271.

  • Sohn Y. K. & Chough S. K. 1989: Depositional processes of the Suwolbong tuff ring, Cheju Island (Korea). Sedimentology 36, 837-855.

  • Szabó C., Falus G., Zajacz Z., Kovács I. & Bali E. 2004: Composition and evolution of lithosphere beneath the Carpathian-Pannonian region: a review. Tectonophysics 393, 119-137.

  • Vazquez J. A. & Ort M. H. 2006: Facies variation of eruption units produced by the passage of single pyroclastic surge currents, Hopi Buttes volcanic field, USA. J. Volcanol. Geotherm. Res. 154, 222-236.

  • Vespermann D. & Schmincke H.-U. 2000: Scoria cones and tuff rings. In: Sigurdsson H., Houghton B. F., McNutt S. R., Rymer H. & Stix J. (Eds.): Encyclopedia of volcanoes. Academic Press, San Diego, 683-694.

  • White J. D. L. & Houghton B. F. 2006: Primary volcaniclastic rocks. Geology 34, 677-680.

  • White J. D. L. & Ross P.-S. 2011: Maar-diatreme volcanoes: A review. J. Volcanol. Geotherm. Res. 201, 1-29.

  • Wijbrans J., Németh K., Martin U. & Balogh K. 2007: 40Ar/39Ar geochronology of Neogene phreatomagmatic volcanism in the western Pannonian Basin, Hungary. J. Volcanol. Geotherm. Res. 164, 193-204.

  • Wohletz K. H. & Sheridan M. F. 1983: Hydrovolcanic explosions II. Evolution of basaltic tuff rings and tuff cones. Amer. J. Sci. 283, 385-413.


Journal + Issues