Stratigraphic correlation potential of magnetic susceptibility and gamma-ray spectrometric variations in calciturbiditic facies (Silurian-Devonian boundary, Prague Synclinorium, Czech Republic)

Open access

Stratigraphic correlation potential of magnetic susceptibility and gamma-ray spectrometric variations in calciturbiditic facies (Silurian-Devonian boundary, Prague Synclinorium, Czech Republic)

Magnetic susceptibility (MS) and gamma-ray spectrometry (GRS) stratigraphy were used for correlation and characterization of eight Silurian-Devonian (S-D) sections in the Prague Synclinorium (Czech Republic). They represent two different facies developments: lower subtidal to upper slope deposits and slope-to-basin-floor distal calciturbidites. Sections from relatively shallow- and deep-water sections are easy to compare and correlate separately, although the detailed relationship between these two facies is still not entirely clear and correlations between the two settings are difficult. This may be due to sharp facies transitions and presence of stratigraphic gaps. The MS and GRS stratigraphic variations combined with sedimentologic data have been also used for reconstruction of the evolution of the sedimentary environment. The beds close above the S-D boundary show noticeably enhanced MS magnitudes but weak natural gamma-ray emissions. It may correspond to an increased amount of terrigenous magnetic material occurring with short-term shallowing (sedimentological evidence). In deep-water sections the uppermost Silurian is characterized by high MS and GRS values. It corresponds to a supply of recycled sediment to the lower wedge which occurred during the late Pridoli regression phase. The basal Devonian beds correspond to gradual deepening, but the overlying sequences reflect other shallowing episodes which are expressed in increasing MS and gamma ray activity of rocks. The MS and GRS fluctuations are interpreted as a result of local subsidence of the sea bottom along synsedimentary growth-faults and/or a biotic event rather than of eustatic sea-level changes.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bábek O. Přikryl T. & Hladil J. 2007: Progressive drowning of carbonate platform in the Moravo-Silesian Basin (Czech Republic) before the Frasnian/Famenian event: facies compositional variations and gamma-ray spectrometry. Facies 53 293-316.

  • Brocke R. Wilde V. Fatka O. & Mann U. 2002: Chitinozoa and acritarchs at the Silurian/Devonian boundary: Examples from the Barrandian area. In: Brock G. A. & Talent J. (Eds.): 1st International Palaeontological Congress. Abstracts Sydney 192.

  • Brocke R. Fatka O. & Wilde V. 2006: Acritarchs and prasynophytes of the Silurian-Devonian GSSP (Klonk Barrandian area Czech Republic). Bull. Geosci. 81 1 27-41.

  • Buggisch W. & Joachimski M. M. 2006: Carbon isotope stratigraphy of the Devonian of Central and Southern Europe. Palaeogeogr. Palaeoclimatol. Palaeoecol. 240 68-88.

  • Buggisch W. & Mann U. 2004: Carbon isotope stratigraphy of Lochkovian to Eifelian limestones from the Devonian of central and southern Europe. Int. J. Earth Sci. 93 521-541.

  • Carls P. Slavík L. & Valenzuela-Ríos J. I. 2007: Revisions of conodont biostratigraphy across the Silurian-Devonian boundary. Bull. Geosci. 82 2 145-164.

  • Chlupáč I. & Kukal Z. 1988: Possible global events and the stratigraphy of the Barrandian Paleozoic (Cambrian-Devonian Czechoslovakia). Sbor. Geol. Věd Geol. 43 83-146.

  • Chlupáč I. Jaeger H. & Zikmundová J. 1972: The Silurian-Devonian boundary in the Barrandian. Bull. Canad. Petrol. Geol. 20 104-174.

  • Chlupáč I. Havlíček V. Kříž J. Kukal Z. & Štorch P. 1998: Palaeozoic of the Barrandian (Cambrian to Devonian). Czech Geol. Surv. Prague 1-183.

  • Crick R. E. Ellwood B. B. El Hassani A. Feist R. & Hladil J. 1997: Magnetosusceptibility event and cyclostratigraphy (MSEC) of the Eifelian-Givetian GSSP and associated boundary sequences in north Africa and Europe. Episodes 20 3 167-175.

  • Crick R. E. Ellwood B. B. El Hassani A. & Feist R. 2000: Proposed magnetostratigraphy susceptibility magnetostratotype for Eifelian-Givetian GSSP (Anti-Atlas Morocco). Episodes 23 2 93-101.

  • Crick R. E. Ellwood B. B. Hladil J. El Hassani A. Hrouda F. & Chlupáč I. 2001: Magnetostratigraphy susceptibility of the Přídolian-Lochkovian (Silurian-Devonian) GSSP (Klonk Czech Republic) and a coeval sequence in Anti-Atlas Morocco. Palaeogeogr. Palaeoclimatol. Palaeoecol. 167 73-100.

  • Crick R. E. Ellwood B. B. Feist R. El Hassani A. Schindler E. Dreesen R. Over D. J. & Girard C. 2002: Magnetostratigraphy susceptibility of the Frasnian/Famennian boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 181 67-90.

  • Čáp P. Vacek F. & Vorel T. 2003: Microfacies analysis of Silurian and Devonian type sections (Barrandian Czech Republic). Czech Geol. Surv. Spec. Pap. 15 1-40.

  • da Silva A. C. & Boulvain F. 2006: Upper Devonian carbonate platform correlations and sea level variations recorded in magnetic susceptibility. Palaeogeogr. Palaeoclimatol. Palaeoecol. 240 373-388.

  • da Silva A. C. Mabille C. & Boulvain F. 2009a: Influence of sedimentary setting on the use of magnetic susceptibility: examples from Devonian of Belgium. Sedimentology 56 1292-1306.

  • da Silva A. C. Potma K. Weissenberger J. A. W. Whalen M. T. Mabille C. & Boulvain F. 2009b: Magnetic susceptibility evolution and sedimentary environments on carbonate platform sediments and atolls comparison of the Frasnian from Belgium and from Alberta. Sed. Geol. 214 3-18.

  • da Silva A. C. Yans J. & Boulvain F. 2010: Early-Middle Frasnian (early Late Devonian) sedimentology and magnetic susceptibility of the Ardennes area (Belgium): identification of severe and rapid sea-level fluctuations. Geologica Belgica 13 4 319-332.

  • Denkler K. E. & Harris A. G. 1988: Conodont-based determination of the Silurian-Devonian boundary in the Valley and Ridge Province Northern and Central Appalachians. US Geol. Surv. Bull. B 1837 B1-B13.

  • Durrance E. M. 1986: Radioactivity in geology: principles and applications. Ellis Horwood Chichester 1-441.

  • Ellwood B. B. Chrzanowski T. H. Hrouda F. Long G. J. & Buhl M. L. 1988: Siderite formation in anoxic deep-sea sediments: a synergetic bacterially controlled process with important implications in paleomagnetism. Geology 16 980-982.

  • Ellwood B. B. Crick R. E. El Hassani A. Benoist S. L. & Young R. H. 2000: Magnetosusceptibility event and cyclostratigraphy method applied to marine rocks: Detrital input versus carbonate productivity. Geology 28 12 1135-1138.

  • Ellwood B. B. Crick R. E. Garcia-Alcade Fernandez J. L. Soto F. M. Truyóls-Massoni M. El Hassani A. & Kovas E. J. 2001: Global correlation using magnetic susceptibility data from Lower Devonian rocks. Geology 29 7 583-586.

  • Ellwood B. B. Garcia-Alcade Fernandez J. L. El Hassani A. Hladil J. Soto F. Truyóls-Massoni M. Wedigge K. & Koptíková L. 2006: Stratigraphy of the Middle Devonian boundary: Formal definition of the susceptibility magnetostratotype in Germany with comparisons to sections in the Czech Republic Morocco and Spain. Tectonophysics 418 31-49.

  • Fiala F. 1970: Silurian and Devonian diabases of the Barrandian. Sbor. Geol. Věd Geol. 17 7-97 (in Czech).

  • Frederichs T. Dobeneck T. Von Bleil U. & Dekkers M. J. 2003: Towards the identification of siderite rhodochrosite and vivianite in sediments by their low-temperature magnetic properties. Phys. Chem. Earth 28 669-679.

  • Frýda J. Hladil J. & Vokurka K. 2002: Seawater strontium isotope curve at the Silurian/Devonian boundary: a study of the global Silurian/Devonian boundary stratotype. Geobios 35 21-28.

  • Geršl M. & Hladil J. 2004: Gamma-ray and magnetic susceptibility correlation across a Frasnian carbonate platform and the search for "punctata" equivalents in stromatoporoid-coral limestone facies of Moravia. Geol. Quart. 48 3 283-292.

  • Grygar T. Dědeček J. Kruiver P. P. Dekkers M. J. Bezdička P. & Schneeweiss O. 2003: Iron oxide mineralogy in late Miocene red beds from La Gloria Spain: rock-magnetic voltammetric and Vis spectroscopy analyses. Catena 53 2 115-132.

  • Herten U. 2000: Petrographische und geochemische Charak-terisierung der Pelit-Lagen aus der Forschungsbohrung Klonk-1 (Suchomasty/Tschechische Republik). Ber. Forschungszentrum Jülich 3751 1-78.

  • Hladil J. 1991: Evaluation of the sedimentary record in the Silurian/Devonian boundary stratotype at Klonk (Barrandian area Czechoslovakia). Newslett. Stratigr. 25 2 115-125.

  • Hladil J. 1992: Are there turbidites in the Silurian/Devonian boundary stratotype (Klonk near Suchomasty Barrandian Czechoslovakia)? Facies 26 35-54.

  • Hladil J. 2002: Geophysical records of dispersed weathering products on the Frasnian carbonate platform and early Famennian ramps in Moravia Czech Republic: proxies for eustasy and palaeoclimate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 181 213-250.

  • Hladil J. Bosák P. Jansa L. F. Těžký A. Helesicová K. Hrubanová J. Pruner P. Krůta T. Špaček P. & Chadima M. 2000: Frasnian eustatic cycles viewed with gamma spectrometric and magneto-susceptibility stratigraphy tools (Moravia): Six major floodings on cratonized basement. Subcommission on Devonian Stratigraphy Newsletter 17 48-52.

  • Hladil J. Bosák P. Slavík L. Carew J. L. Mylroie J. E. & Geršl M. 2003a: A pragmatic test of early origin and fixation of gammaray spectrometric (U Th) and magneto-susceptibility (Fe) patterns related to sedimentary cycle boundaries in pure platform limestones. Carbonate Evaporite 18 2 89-107.

  • Hladil J. Bosák P. Slavík L. Carew J. L. Mylroie J. E. & Geršl M. 2003b: Early diagenetic origin and persistence of gamma-ray and magnetosusceptibility patterns in platform carbonates: comparison of Devonian and Quaternary sections. Phys. Chem. Earth 28 719-727.

  • Hladil J. Geršl M. Strnad L. Frána J. Langrová A. & Spišiak J. 2006: Stratigraphic variations of complex impurities in platform limestones and possible significance of atmospheric dust: a study with emphasis on gamma-ray spectrometry and magnetic susceptibility outcrop logging (Eifelian-Frasnian Moravia Czech Republic). Int. J. Earth Sci. 95 4 703-723.

  • Hladíková J. Hladil J. & Kříbek B. 1997: Carbon and oxygen isotope record across Pridoli to Givetian stage boundaries in the Barrandian basin (Czech Republic). Palaeogeogr. Palaeoclimatol. Palaeoecol. 132 225-241.

  • Hrouda F. 1994: A technique for the measurement of thermal changes of magnetic susceptibility of weakly magnetic rocks by the CS-2 apparatus and the KLY-2 Kappabridge. Geophys. J. Int. 118 604-612.

  • Jelínek V. & Pokorný J. 1997: Some new concepts in technology of transformer bridges for measuring susceptibility anisotropy of rocks. Phys. Chem. Earth 22 179-181.

  • Jeppsson L. 1988: Conodont biostratigraphy of the Silurian boundary stratotype at Klonk Czechoslovakia. Geologica et Palaeont. 22 21-31.

  • Jeppsson L. 1989: Latest Silurian conodonts from Klonk Czechoslovakia. Geologica et Palaeont. 23 21-37.

  • Kastner M. 1971: Authigenic feldspars in carbonate rocks. Amer. Mineralogist 56 1403-1442.

  • Kastner M. & Siever R. 1979: Low temperature feldspars in sedimentary rocks. Amer. J. Sci. 279 453-479.

  • Klapper G. & Murphy M. A. 1975: Silurian-Lower Devonian Conodont Sequence in the Roberts Mountains Formation of Central Nevada. Univ. California Publ. Geol. Sci. 111 1-62.

  • Koptíková L. Hladil J. Slavík L. & Frána J. 2007: The precise position and structure of the Basal Choteč Event: Lithological MS-and-GRS and geochemical characterisation of the Emsian-Eifelian carbonate stratal successions in the Prague Syncline (Teplá-Barrandian Unit Central Europe). In: Over D. J. & Morrow J. (Eds.): Subcommission on Devonian Stratigraphy and IGCP 499 Devonian Land Sea Interaction Eureka NV 9-17 Sep 2007 Program and Abstracts. Genesea NY US 55-57.

  • Koptíková L. Hladil J. Slavík L. Frána J. & Vacek F. 2008: Evidence of a significant change between Lochkovian and Pragian: detailed lithological geophysical geochemical and mineralogical aspects (Požáry 3 section in Prague Synform). In: El-Mehdawi A. D. & Koenigshof P. (Eds.): Abstracts of the Field Workshop IGCP 499 Devonian Land-Sea Interaction. Libyan Petroleum Institute Tripoli 10-14.

  • Koptíková L. Bábek O. Hladil J. Kalvoda J. & Slavík J. 2010: Stratigraphic significance and resolution of spectral reflectance logs in Lower Devonian carbonates of the Barrandian area Czech Republic; a correlation with magnetic susceptibility and gamma-ray logs. Sed. Geol. doi: 10.1016/j.sedgeo.2010.01.004

  • Kranendonck O. 2000: Petrographische und geochemische Charak-terisierung der Karbonatbänke aus der Forschungsbohrung Klonk-1 (Suchomasty/Tschechische Republik). Ber. Forschung-szentrum Jülich 3750 1-113.

  • Krs M. & Pruner P. 1995: Palaeomagnetism and palaeogeography of the Variscan formations of the Bohemian Massif comparison with other European regions. J. Czech Geol. Soc. 40 1-2 3-46.

  • Krs M. Pruner P. & Man O. 2001: Tectonic and paleogeographic interpretation of the paleomagnetism of Variscan and pre-Variscan formations of the Bohemian Massif with special reference to the Barrandian terrane. Tectonophysics 332 93-114.

  • Kruiver P. P. Dekkers M. J. & Heslop D. 2001: Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation. Earth Planet. Sci. Lett. 189 269-276.

  • Kříž J. 1992: Silurian field excursions. Prague Basin (Barrandian) Bohemia. Nat. Mus. Wales Geol. Ser. 13 1-111.

  • Kříž J. Jaeger H. Paris F. & Schönlaub H. P. 1986: Přídolí — the fourth subdivision of the Silurian. Jb. Geol. Bundesanst. 129 2 291-360.

  • Lis J. Pasieczna A. Strzelecki R. Wolkowicz S. & Lewandowski P. 1997: Geochemical and radioactivity mapping in Poland. J. Geochem. Explor. 60 39-53.

  • Løvborg L. Wollenberg H. Sørensen P. & Hansen J. 1971: Field determination of uranium and thorium by gamma-ray spectrometry exemplified by measurements in the Ilimaussaq alkaline intrusion South Greenland. Econ. Geol. 66 368-384.

  • Malkowski K. Racki G. Drygant D. & Szaniawski H. 2009: Carbon isotope stratigraphy across the Silurian-Devonian transition in Podolia Ukraine: evidence for a global geochemical perturbation. Geol. Mag. 146 5 674-689.

  • Mann U. Herten U. Kranendonck O. Poelchau H. S. Stroetmann J. Vos H. Wilkes H. Suchý V. Brocke R. Wilde V. Muller A. Ebert J. Bozdogan N. Soylu C. El Hassani A. & Yalcin M. N. 2001: Dynamics of the Silurian/Devonian boundary sequence: sedimentary cycles vs. organic matter variation. Terra Nostra 4 44-48.

  • Matti J. C. & McKee E. H. 1977: Silurian and Lower Devonian paleo-geography of the outer continental shelf of the Cordilleran Miogeocline central Nevada. In: Stewart J. H. Stevens C. H. & Fritsche A. E. (Eds.): Paleozoic Paleogeography of the Western United States — Pacific Section. SEPM Los Angeles 181-215.

  • McLaren D. J. 1977: The Silurian-Devonian Committee. A final report. In: Martinsson A. (Ed.): The Silurian-Devonian boundary. I. U. G. S. Ser. A 5 1-34.

  • Melichar R. 2004: Tectonics of the Prague Synform: a hundred years of scientific discussion. Krystalinikum 30 167-187.

  • Melichar R. & Hladil J. 1999: Resurrection of the Barrandian nappe structures central Bohemia. Geolines 8 48-50.

  • Mišík M. 1994: Authigenic feldspars in carbonate rocks of the Western Carpathians. Geol. Carpathica 45 103-111.

  • Paris F. Laufeld S. & Chlupáč I. 1981: Chitinozoa of the Silurian-Devonian boundary statotypes in Bohemia. Sver. Geol. Unders. Ser. C 4 51 1-29.

  • Parma J. & Zapletal K. 1991: CS-1 apparatus for measuring the temperature dependence of low-field susceptibility of minerals and rocks (in cooperation with the KLY-2 Kappabridge). Leaflet Geofyzika Brno.

  • Patočka F. & Štorch P. 2004: Evolution of geochemistry and depositional settings of Early Palaeozoic siliciclastics of the Barrandian (Teplá-Barrandian Unit Bohemian Massif Czech Republic). Int. J. Earth Sci. 93 728-741.

  • Patočka F. Pruner P. & Štorch P. 2003: Palaeomagnetism and geochemistry of Early Palaeozoic rocks of the Barrandian (Teplá-Barrandian Unit Bohemian Massif): palaeotectonic implications. Phys. Chem. Earth 28 735-749.

  • Röhlich P. 2007: Structure of the Prague Basin: The deformation diversity and its causes (the Czech Republic). Bull. Geosci. 82 2 175-182.

  • Saltzman M. R. 2002: Carbon isotope (δ13C) stratigraphy across the Silurian-Devonian transition in North America: evidence for a perturbation of the global carbon cycle. Palaeogeogr. Palaeoclimatol. Palaeoecol. 187 83-100.

  • SatisGeo Ltd. 2009: GS-512 Gamma Ray Spectrometer. Manufacturer's leaflet with technical data. http://www.satisgeo.com/gs5.htm

  • Schlager W. Reijmer J. J. G. & Droxler A. 1994: Highstand shedding of carbonate platforms. J. Sed. Res. B64 3 270-281.

  • Schönlaub H. P. Kreuzer L. Joachimski M. M. & Buggisch W. 1994: Paleozoic boundary sections of the Carnic Alps (Southern Austria). Erlanger Geol. Abh. 122 77-103.

  • Slavík L. Hladil J. Blažek R. & Krůta M. 2000: Anatomy of the Pragian stratigraphic column: gamma spectrometric record throughout complete 170-m thick Pragian section in calciturbidite/hemipelagite facies (Prague section "Under Barrandov Bridge"). Subcommission on Devonian Stratigraphy Newsletter 17 46-47.

  • Suchý V. & Rozkošný I. 1996: Diagenesis of clay minerals and organic matter in the Pridoli Formation (Upper Silurian) the Barrandian Basin Czech Republic: first systematic survey. Acta Univ. Carol. Geol. 38 401-409.

  • Suchý V. Rozkošný I. Žák K. & Francü J. 1996: Epigenetic dolomitization of the Přídolí formation (Upper Silurian) the Barrandian basin Czech Republic: implications for burial history of Lower Paleozoic strata. Geol. Rundsch. 85 264-277.

  • Tauxe L. Mullender T. A. T. & Pick T. 1996: Pot-bellies wasp-waists and superparamagnetism in magnetic hysteresis. J. Geophys. Res. 101 571-584.

  • Vacek F. 2007: Carbonate microfacies and depositional environments of the Silurian-Devonian boundary strata in the Barrandian area (Czech Republic). Geol. Carpathica 58 6 497-510.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.699
5-year IMPACT FACTOR: 1.676

CiteScore 2018: 1.76

SCImago Journal Rank (SJR) 2018: 0.627
Source Normalized Impact per Paper (SNIP) 2018: 1.203

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 318 131 3
PDF Downloads 156 88 2