Experimental interactions of Slovak bentonites with metallic iron

Open access

Experimental interactions of Slovak bentonites with metallic iron

The experimental stability of four bentonites and one K-bentonite from Slovak deposits in the presence of iron was studied to simulate the possible reactions of clays (bentonite barrier) in the contact with Fe containers in a nuclear waste repository. The batch experiments were performed at 60 °C for 30 and 120 days in aerobic conditions. The reaction products were examined by XRD, FTIR, and Mössbauer spectroscopies and CEC (cation exchange capacities) were determined. Reaction solutions were analysed for selected elements using AAS (atomic absorption spectrometry). The results show that bentonites do not interact equally with metallic iron. Bentonites from the Jelšový Potok, Kopernica and Lieskovec deposits reacted similarly whereas the interaction between the bentonite from Lastovce and the iron was less intensive. The lower reactivity of the bentonite from Lastovce can be explained by its low content of smectite. During iron-clay interactions the iron was consumed and Fe oxides (magnetite, lepidocrocite) were formed. Decrease of the smectite diffraction peaks intensity and CEC values during the experiments show rather the rearrangement of the original smectite crystals than dissolution of smectite. In the K-bentonite from the Dolná Ves deposit where the mixed-layer illite-smectite is present instead of smectite, the dissolution of illite-smectite was observed along with the neoformation of smectite. The structure of illite-smectite deteriorated more than the structure of smectites which suggests that this mixed-layer illite-smectite is much less stable in the presence of iron than smectites.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Arthur R. Apted M. & Stenhouse M. 2005: Comment on Long-Term Chemical and Mineralogical Stability of the Buffer. SKI Report 2005: 09 Swedish Nuclear Power Inspectorate Stockholm Sweden.

  • Betancur J. D. Barrero C. A. Greneche J. M. & Goya G. F. 2004: The effect of water content on the magnetic and structural properties of goethite. J. Alloys. Compounds 369 247-251.

  • Börgesson L. Karnland O. Hökmark H. & Sellin P. 2002: Buffer and Safety Assessment for KBS-3H. SKB September 2002.

  • Cosultchi A. Rossbach P. & Hernandez-Calderon I. 2003: XPS analysis of petroleum well tubing adherence. Surface and Interface Analysis 35 239-245.

  • Číčel B. Komadel P. & Hronský J. 1990: Dissolution of the fine fraction of Jelšový Potok bentonite in hydrochloric and sulphuric acids. Ceramics 34 41-48.

  • Číčel B. Komadel P. Bednáriková E. & Madejová J. 1992: Mineralogical composition and distribution of Si Al Fe Mg and Ca in the fine fractions of some Czech and Slovak bentonites. Geol. Carpathica Ser. Clays 43 1 3-7.

  • Eberl D. D. 2003: User's guide to Rockjock — a program for determining quantitative mineralogy from powder X-ray diffraction data. U. S. Geol. Surv. Open-File Report 03-78 47.

  • Friedl J. & Schwertmann U. 1996: Aluminium influence on iron oxides: XVIII. The effect of Al substitution and crystal size on magnetic hyperfine fields of natural goethites. Clay Miner. 31 455-464.

  • Golden D. C. Bowen L. H. Weed S. B. & Bigham J. M. 1979: Mössbauer studies of synthetic and soil-occurring aluminum-substituted goethites. Soil Sci. Soc. Amer. J. 43 802-808.

  • Guillaume D. Neaman A. Cathelineau M. Mosser-Ruck R. Peiffert C. Abdelmoula M. Dubessy F. Villiéras F. Baronnet A. & Michau N. 2003: Experimental synthesis of chlorite from smectite at 300 °C in the presence of metallic Fe. Clay Miner. 38 281-302.

  • Guillaume D. Neaman A. Cathelineau M. Mosser-Ruck R. Peiffert C. Abdelmoula M. Dubessy F. Villiéras F. & Michau N. 2004: Experimental study of the transformation of smectite at 80 °C and 300 °C in the presence of Fe oxides. Clay Miner. 39 17-34.

  • Habert B. 2000: Réactivité du fer dans les gels et les smectites. Thesis Université Paris 6 Paris 1-227.

  • Harder H. 1978: Synthesis of iron layer silicate minerals under natural conditions. Clays Clay Miner. 26 1 65-72.

  • JNC 2000: Second progress report on research and development for the geological disposal of HLW in Japan. H12: Project to establish scientific and technical basis for HLW disposal in Japan (Project Overview Report). JNC TN1410 2000-001.

  • Kaufhold S. & Dohrmann R. 2003: Beyond the methylene blue method: determination of the smectite content using the Cu-Triene method. Z. Angew. Geol. 2 13-17.

  • Lantenois S. 2003: Réactivité fer métal/smectites en milieu hydraté à 80 °C. Ph.D. Thesis Université d'Orléans Orléans 1-188.

  • Lantenois S. Lanson B. Muller F. Bauer A. Jullien M. & Plançon A. 2005: Experimental study of smectite interaction with metal Fe at low temperature: 1. Smectite destabilization. Clays Clay Miner. 53 6 597-612.

  • Madejová J. Bujdák J. Janek M. & Komadel P. 1998: Comparative FT-IR study of structural modifications during acid treatment of dioctahedral smectites and hectorite. Spectrochimica Acta Part A 54 1397-1406.

  • Madejová J. Kečkéš J. Pálková H. & Komadel P. 2002: Identification of components in smectite/kaolinite mixtures. Clay Miner. 37 377-388.

  • Madsen F. T. 1998: Clay mineralogical investigations related to nuclear waste disposal. Clay Miner. 33 109-129.

  • Meier L. P. & Kahr G. 1999: Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper(II) ion with triethylentetramine and tetraethylenepentamine. Clays Clay Miner. 47 386-388.

  • Müller-Vonmoos M. Kahr G. Bucher F. Madsen F. T. & Mayor P. A. 1991: Untersuchungen zum Verhalten von Bentonit in kontakt mit Magnetit und Eisen unter Endlagerbedingungen. NTB 91-14. Nagra Hardstrasse 73 CH-5430 Wettingen Switzerland.

  • Murad E. 1988: Properties and behaviour of iron oxides as determined by Mössbauer spectroscopy. In: Stucki J. W. Goodman B. A. & Schwertmann U. (Eds.): Iron in soils and clay minerals. Reidel Dordrecht 309-350.

  • Murad E. 1989: Poorly-crystalline minerals and complex mineral assemblages. Hyperfine Interactions 47 33-53.

  • Perronnet M. 2004: Etude des interactions fer-argile en condition de stockage géologique profond des déchets nucléaires HAVL. Ph.D. Thesis ENS Géologie Nancy 1-233.

  • Perronnet M. Villiéras F. Jullien M. Razafitianamahavaro A. Raynal J. & Bonnin D. 2007: Towards a link between the energetic heterogeneities of the edge faces of smectites and their stability in the context of metallic corrosion. Geochim. Cosmochim. Acta 71 1463-1479.

  • Push R. 2001: The Buffer and Backfill Handbook. Part 2: Materials and techniques. SKB TR 02-12. Swedish Nuclear Fuel and Waste Management Co. Stockholm Sweden.

  • Push R. 2003: The Buffer and Backfill Handbook. Part 3: Models for calculation of processes and behavior. SKB TR 03-07. Swedish Nuclear Fuel and Waste Management Co. Stockholm Sweden.

  • SKI 2005: Engineered barrier system — Long-term stability of buffer and backfill. SKI Report 2005: 48. Swedish Nuclear Power Inspectorate Stockholm Sweden.

  • Smart N. R. Blackwood D. J. & Werme L. 2002: Anaerobic corrosion of carbon steel and cast iron in artificial groundwaters: Part 1 — Gas generation. Corrosion 58 627-637.

  • Środoń J. Drits V. A. McCarty D. K. Hsieh J. C. C. & Eberl D. D. 2001: Quantitative X-ray diffraction analysis of clay-bearing rocks from random preparations. Clays Clay Miner. 49 6 514-528.

  • Thorsager P. & Lindgren E. 2004: KBS-3H — Summary report of work done during basic design. SKB Rapport R-04-42. Swedish Nuclear Fuel and Waste Management Co. Stockholm Sweden.

  • Tomoe Y. Shimizu M. & Nagae Y. 1999: Unusual corrosion of a drill pipe in newly developed drilling mud during deep drilling. Corrosion 55 706-713.

  • Wilson J. Cressey G. Cressey B. Cuadros J. Vala Ragnarsdottir K. Savage D. & Shibata M. 2006: The effect of iron on montmorillonite stability. (II) Experimental investigation. Geochim. Cosmochim. Acta 70 323-336.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.699
5-year IMPACT FACTOR: 1.676

CiteScore 2018: 1.76

SCImago Journal Rank (SJR) 2018: 0.627
Source Normalized Impact per Paper (SNIP) 2018: 1.203

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 239 132 3
PDF Downloads 102 61 0