Goat Colostrum—Source of Toxigenic Bacillus Cereus

Open access

Abstract

The aim of this study was to evaluate the toxigenic potential of Bacillus cereus strains isolated from frozen goat colostrum. Of the 50 phenotypically suspected B. cereus isolates, 39 (78.0 %) were confirmed as B. cereus by the polymerase chain reaction (PCR) method based on the gyrB gene detection. In these isolates, genes encoding the production of haemolysin BL (Hbl), a complex of non-haemolytic enterotoxins (Nhe) and emetic toxin were detected by the PCR method. In 36 (92.3 %) confirmed B. cereus isolates, genes encoding at least one type of toxins of interest were detected. In all toxigenic isolates, we found the presence of genes for Nhe production, and in 16 (41.0 %) of the isolates, genes encoding both Nhe and haemolysin BL were shown. Eight (20.5 %) of the emetic strains of B. cereus were identified. The emetic toxin production gene was always detected simultaneously with genes encoding non-haemolytic enterotoxin production. The ability to produce BL haemolysin and non-haemolytic enterotoxins were confirmed by the immunochromatographic method. In summary, goat colostrum can be a significant source of toxigenic strains of B. cereus.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Beattie S. H. Williams A. G. 1999: Detection of toxigenic strains of Bacillus cereus and other Bacillus spp. with an improved cytotoxicity assay. Lett. Appl. Microbiol. 28 3 221—225.

  • 2. Beecher D. J. Schoeni J. L. Wong A. C. 1995: Enterotoxic activity of hemolysin BL from Bacillus cereus. Infect. Immun. 63 11 4423—4428.

  • 3. Cressey P. King N. Soboleva T. 2016: Risk profile: Bacillus Cereus in dairy products. MPI Technical Paper No. 2016/58 1—112. Retrieved April 21 2019 on the Word Wide Web https://www.mpi.govt.nz/dmsdocument/14149/send11.

  • 4. Cui Y. Liu X. Dietrich R. Märtlbauer E. Cao J. Ding S. et al. 2016: Characterization of Bacillus cereus isolates from local dairy farms in China. FEMS Microbiol. Lett. 36312 1—6. DOI: 10.1093/femsle/fnw096.

  • 5. Di Pinto A. Bonerba E. Bozzo G. Ceci E. Terio V. Tantillo G. 2013: Occurrence of potentially enterotoxigenic Bacillus cereus in infant milk powder. Eur. Food Res. Technol. 237 2 275—279. DOI: 10.1007/s00217-013-1988-8.

  • 6. Dréan P. McAuley C. M. Moore S. C. Fegan N. Fow E. M. 2015: Characterization of the spore-forming Bacillus cereus sensu lato group and Clostridium perfringens bacteria isolated from the Australian dairy farm environment. BMC Microbiol. 15 38 1—10. DOI: 10.1186/s12866-015-0377-9.

  • 7. Ghelardi E. Celandroni F. Salvetti S. Barsotti C. Baggiani A. Senesi S. 2002: Identification and characterization of toxigenic Bacillus cereus isolates responsible for two food-poisoning outbreaks. FEMS Microbiol. Lett. 208 1 129—134. DOI: 10.1111/j.1574-6968.2002.tb11072.x.

  • 8. Granum E. P. Lindbäck T. 2013: Bacillus cereus. In Doyle M. P. Buchanan R. L: Food Microbiology: Fundamentals and Frontiers 4th edn. ASM Press Washington DC 491—502.

  • 9. Guinebretiere M. H. Broussolle V. Nguyen-The C. 2002: Enterotoxigenic profiles of food-poisoning and food-borne Bacillus cereus strains. J. Clin. Microbiol. 40 8 3053—3056. DOI: 10.1128%2FJCM.40.8.3053-3056.2002.

  • 10. Horáčková Š. Skalka V. Solichová K. Čurda L. 2015: Antimicrobial effect of cow and goat colostrum against undesirable microorganisms (In Czech). Mlékařské listy 153 XIX—XXII.

  • 11. Horwood P. F. Burgess G. W. Oakey H. J. 2004: Evidence for non-ribosomal peptide synthetase production of cereulide (the emetic toxin) in Bacillus cereus. FEMS Microbiol. Lett. 236 2 319—324. DOI: 10.1016/j.femsle.2004.06.004.

  • 12. Keisam S. Tuikhar N. Ahmed G. Jeyaram K. 2019: Toxigenic and pathogenic potential of enteric bacterial pathogens prevalent in the traditional fermented foods marketed in the Northeast region of India. Int. J. Food Microbiol. 296 21—30. DOI: 10.1016/j.ijfoodmicro.2019.02.012.

  • 13. Ma H. Li J. Xi X. Xu H. Wuri L. Bian Y et al. 2018: Evaluation of bacterial contamination in goat milk powder using PacBio single molecule real-time sequencing and droplet digital PCR. J. Food Prot. 81 11 1791—1799. DOI: 10.4315/0362-028X.JFP-17-535.

  • 14. Martineau F. Picard F. J. Roy P. H. Ouellette M. Bergeron M. G. 1996: Species-specific and ubiquitous DNA-based assays for rapid identification of Staphylococcus epidermidis. J. Clin. Microbiol. 34 12 2888—2893.

  • 15. Organji S. R. Abulreesh H. H. Elbanna K. Osman G. E. H. Khider M. 2015: Occurrence and characterization of toxigenic Bacillus cereus in food and infant faeces. Asian Pac. J. Trop. Biomed. 5 7 515—520. DOI: 10.1016/j.apjtb.2015.04.004.

  • 16. Rowan N. J. Anderson J. G. 1998: Diarrhoeal enterotoxin production by psychrotrophic Bacillus cereus present in reconstituted milk-based infant formulae (MIF). Lett Appl. Microbiol. 26 2 161—165.

  • 17. Rowan N. J. Caldow G. Gemmell C. G. Hunter I. S. 2003: Production of diarrheal enterotoxins and other potential virulence factors by veterinary isolates of Bacillus species associated with non-gastrointestinal infections. App. Environ. Microbiol. 69 4 2372—2376. DOI: 10.1128/aem.69.4.2372-2376.2003.

  • 18. Schoeni J. L. Wong A. C. 1999: Heterogeneity observed in the components of haemolysin BL an enterotoxin produced by Bacillus cereus. Int. J. Food Microbiol. 53 2—3 159—167.

  • 19. Seong S. J. Lim J. S. Lee K. G. Lee S. J. Hong K. W. 2008: Toxin gene profiling of Bacillus cereus food isolates by PCR. J. Korean Soc. Appl. Biol. Chem. 51 4 263—268. DOI: 10.3839/jksabc.2008.046.

  • 20. Stenfors Arnesen L. P. Fagerlund A. Granum P. E. 2008: From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32 4 579—606. DOI: 10.1111/j.1574-6976.2008.00112.x.

  • 21. Svensson B. Monthán A. Shaheen R. Andersson M. A. Salkinoja-Salonen M. Christiansson A. 2006: Occurrence of emetic toxin producing Bacillus cereus in the dairy production chain. Int. Dairy J. 16 7 740—749. DOI: 10.1016/j.idairyj.2005.07.002.

  • 22. Yamada S. Ohashi E. Agata N. Venkateswaran K. 1999: Cloning and nucleotide sequence analysis of gyrB of Bacillus cereusB. thuringiensis B. mycoides and B. anthracis and their application to the detection of B. cereus in rice. App. Environ. Microbiol. 65 4 1483—1490.

  • 23. Zhang F. Wang Z. Lei F. Wang B. Jiang S. Peng Q. et al. 2017: Bacterial diversity in goat milk from the Guanzhong area of China. J. Dairy Sci. 100 10 7812—7824. DOI: 10.3168/jds.2017-13244.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 43 43 8
PDF Downloads 24 24 9