Antibiotic Resistance of Escherichia Coli Isolated from Broiler Chickens

M. Sciberras 1 , M. Pipová 1 , I. Regecová 1 , P. Jevinová 1  and S. Demjanová 1
  • 1 Department of Food Hygiene and Technology, Institute of Meat Hygiene and Technology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia


The purpose of this study was to detect the antibiotic resistance of forty-one Escherichia coli isolates from the intestinal contents of slaughtered broiler chickens using the disk diffusion method according to Kirby-Bauer. Mueller-Hinton agar plates were inoculated with 0.1 ml overnight broth cultures of individual E. coli isolates and the disks with the following concentrations of antibiotics were applied onto them: ampicillin (10 μg), cefotaxime (30 μg), gentamicin (10 μg), streptomycin (10 μg), azithromycin (15 μg), tetracycline (30 μg), ciprofloxacin (30 μg) and levofloxacin (3 μg). After the incubation at 37 °C for 16—18 hours, the inhibition zones were measured and interpreted in accordance with the Clinical and Laboratory Standard Institute (CLSI) zone diameter breakpoints. Almost all E. coli isolates showed resistance to tetracycline (92.68 %), most of them were resistant to gentamicin (75.61 %) and levofloxacine (70.73 %). Phenotypic resistance to tetracycline was further confirmed with the help of the Polymerase Chain Reaction (PCR) procedure focused on the presence of specific tet(A) and tet(B) genes. These genes were detected in all 41 E. coli isolates. On the contrary, E. coli isolates were highly susceptible to both azithromycin and streptomycin. In conclusion, the study highlighted the role of commensal E. coli bacteria isolated from the intestines of broiler chickens as an important reservoir of tetracycline resistance genes.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Apajalahti, J., Kettunen, A., Graham, H., 2004: Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. World’s Poultry Sci. J., 60, 2, 223—232. DOI: 10.1079/WPS200415.

  • 2. Bogaard, A. E., van, den, Stobberingh, E. E., 2000: Epidemiology of resistance to antibiotics: Links between animals and humans. Int. J. Antimicrob. Agents, 14, 4, 327—335. DOI: 10.1016/S0924-8579(00)00145-X.

  • 3. Chopra, I., Roberts, M., 2001: Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev., 65, 2, 232—260. DOI: 10.1128/MMBR.65.2.232-260.2001.

  • 4. CLSI, 2018a: Performance Standards for Antimicrobial Disc Tests. CLSI Supplement M02-A13. Clinical and Laboratory Standards Institute, Wayne, PA, 92 pp.

  • 5. CLSI, 2018b: Performance Standards for Antimicrobial Susceptibility Testing. CLSI Supplement M100-28. Clinical and Laboratory Standards Institute, Wayne, PA, 257 pp.

  • 6. Fluit, A. C., Schmitz, F. J., 2004: Resistance integrons and super-integrons. J. Clin. Microbiol., 10, 2, 272—288. DOI: 10.1111/j.1198-743X.2004.00858.x.

  • 7. Gregová, G., Kmeťová, M., Kmeť, V., Venglovský, J., Fehér, A., 2012: Antibiotic resistance of Escherichia coli isolated from a poultry slaughterhouse. Ann. Agric. Environ. Med., 19, 1, 75—77.

  • 8. Ljubojević, D., Velhner, M., Todorović, D., Pajić, M., Milanov, D., 2016: Tetracycline resistance in Escherichia coli isolates from poultry. Arhiv Veterinarske Medicine, 9, 1, 61—81.

  • 9. Ljubojević, D., Pelić, M., Puvača, N., Milanov, D., 2017: Resistance to tetracycline in Escherichia coli isolates from poultry meat: Epidemiology, policy and perspective. World’s Poultry Sci. J., 73, 2, 409—417. DOI: 10.1017/S0043933917000216.

  • 10. Marchant, M., Vinue, L., Torres, C., Moreno, M. A., 2013: Change of integrons over time in Escherichia coli isolates recovered from healthy pigs and chickens. Vet. Microbiol., 163, 1–2,124—132. DOI: 10.1016/j.vetmic.2012.12.011.

  • 11. Mohammadi, V., Ghaniei, A., Sepehrnia, P., 2018: Antimicrobial resistance profile and prevalence of tetracycline resistance genes in Escherichia coli isolates from broiler chickens, Northwestern Iran. Bulgarian J. Vet. Med., 21, 2, 169—175. DOI: 10.15547/bjvm.1046.

  • 12. Momtaz, H., Rahimi, E., Moshkelani, S., 2012: Molecular detection of antimicrobial resistance genes in E. coli isolated from slaughtered commercial chickens in Iran. Vet. Med., 57, 4,193—197. DOI: 10.17221/5916-VETMED.

  • 13. Mooljuntee, S, Chansiripornchai, P, Chansiripornchai, N., 2010: Prevalence of the cellular and molecular antimicrobial resistance against E. coli isolated from Thai broilers. Thai J. Vet. Med., 40, 3, 311—315.

  • 14. Nataro, J. P., Kaper, J. B., 1998: Diarrheagenic Escherichia coli. Clin. Microbiol. Rev., 11, 1, 142—201. DOI: 10.1128/CMR.11.1.142.

  • 15. Pipová, M., 2018: Antimicrobial resistance in staphylococci. In Budimir, A.: Fighting Antimicrobial Resistance. IAPC, Zagreb, 41—76.

  • 16. Randall, L. P., Cooles, S. W., Osborn, M. K., Piddock, L. J., Woodward, M. J., 2004: Antibiotic resistance genes, integrons and multiple antibiotic resistance in thirty-five serotypes of Salmonella enterica isolated from humans and animals in the UK. J. Antimicrob. Chemoth., 53, 2, 208—216. DOI:10.1093/jac/dkh070.

  • 17. Regulation (EC) No. 854/2004 of the European Parliament and of the Council of 29 April 2004, laying down specific rules for the organisation of official controls on products of animal origin intended for human consumption.

  • 18. Regulation (EC) No. 882/2004 of the European Parliament and of the Council of 29 April 2004, on official controls performed to ensure the verification of compliance with feed and food law, animal health and animal welfare rules.

  • 19. Sengelov, G., Halling-Sorensen, B., Aarestrup, F. M., 2003: Susceptibility of Escherichia coli and Enterococcus faecium isolated from pigs and broiler chickens to tetracycline degradation products and distribution of tetracycline resistance determinants in E. coli from food animals. Vet. Microbiol., 95, 1—2, 91—101. DOI: 10.1016/S0378-1135(03)00123-8.

  • 20. Soufi, L., Sáenz, Y., Vinué, L., Abbassi, M. S., Ruiz, E., Zarazaga, M., et al., 2011: Escherichia coli of poultry food origin as reservoir of sulphonamide resistance genes and integrons. Int. J. Food Microbiol., 144, 3, 497—502. DOI: 10.1016/j.ijfoodmicro.2010.11.008.

  • 21. Stocki, S. L., Babiuk, L. A., Rawlyk, N. A., Potter, A. A., Allan, B. J., 2002: Identification of genomic differences between Escherichia coli strains pathogenic for poultry and E. coli K-12 MG1655 using suppression subtractive hybridization analysis. Microbial Pathogenesis, 33, 6, 289—298, DOI: 10.1006/mpat.2002.0536.

  • 22. Wei, S., Morrison, M., Yu, Z., 2013: Bacterial census of poultry intestinal microbiome. Poultry Sci., 92, 3, 671—683. DOI: 10.3382/ps.2012-02822.

  • 23. White, D. G., McDermott, P. F., 2001: Emergence and transfer of antibacterial resistance. J. Dairy Sci., 84 (Suppl.), 151—l55. DOI: 10.3168/jds.S0022-0302(01)70209-3.

  • 24. Zibandeh, S., Sharifiyazdi, H., Asasi, K., Abdi-Hachesoo, B., 2016: Investigation of tetracycline resistance genes in Escherichia coli isolates from broiler chickens during a rearing period in Iran. Veterinarski Arhiv, 86, 4, 565—572.


Journal + Issues