Effects of Cell Seeding Methods on Chondrogenic Differentiation of Rat Mesenchymal Stem Cells in Polyhydroxybutyrate/Chitosan Scaffolds

Open access


The aim of our study was to examine the effects of passive and active cell seeding techniques on in vitro chondrogenic differentiation of mesenchymal stem cells (MSC) isolated from rat bone marrow and seeded on porous biopolymer scaffolds based on polyhydroxybutyrate/chitosan (PCH) blends. This paper is focused on the distribution of the cells on and in the scaffolds, since it influences the uniformity of the created extracellular matrix (ECM), as well as the homogenity of the distribution of chondrogenic markers in vitro which ultimately affects the quality of the newly created tissue after in vivo implantation. The three types of cell-scaffold constructs were examined by: fluorescence microscopy, SEM, histology and quantitative analysis of the glycosaminoglycans after chondrogenic cultivation. The results demonstrated that the active cells seeded via the centrifugation of the cell suspension onto the scaffold guaranteed an even distribution of cells on the bulk of the scaffold and the uniform secretion of the ECM products by the differentiated cells.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Barry F. P. Murphy J. M. 2004: Review Mesenchymal stem cells: clinical applications and biological characterization. Int. J. Biochem. Cell Biol 36 568—584. DOI: 10.1016/j.biocel.2003.11.001.

  • 2. Bornes T. D. Jomha N. M. Mulet-Sierra A. Adesida A. B. 2016: Optimal seeding densities for in vitro chondrogenesis of two- and three-dimensional-isolated and expanded bone marrow-derived mesenchymal stromal stem cells within a porous collagen scaffold. Tissue Engn. C: Methods 22 208— 220. DOI: 10.1089/ten.tec.2015.036558.

  • 3. Collins M. N. Birkinshaw C. 2013: Hyaluronic acid based scaffolds for tissue engineering—A review. Carb. Pol. 92 (2) 1262—1279. DOI 10.1016/j.carbpol.2012.10.028.

  • 4. Deng Y. Lin X. S. Zheng. Z. Deng. J. G. Chen J. CH. Ma H. Chen G. Q. 2003: Poly (hydroxybutyrate-co-hydroxyhexanoate) promoted production of extracellular matrix of articular cartilage chondrocytes in vitro. Biomaterials 24 4273—4281.

  • 5. Deng CH. M. He L. Z. Zhao M. Yang D. Liu Y. 2007: Biological properties of the chitosan-gelatin sponge wound dressing. Carb. Pol. 69 583—589. DOI: 10.1016/j.carbpol.2007.01.014.

  • 6. Dominici M. Le Blanc K. Meller I. Slaper-Cortenbach I. Marini F. C. Krause D. S. et al. 2006: Minimal criteria for defining mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8 315—317.

  • 7. Ehlers E. M. Fuss M. Rohwedel J. Russlies M. Kuehnel W. Behrens P. 1999: Development of a biocomposite to fill out articular cartilage lesions. Light scanning and transmission electron microscopy of sheep chondrocytes cultured on a collagen I/III sponge. Ann. Anat. 181 (6) 513—518. DOI: 10.1016/S0940-9602(99)80055-7.

  • 8. Fernandez Vallone V. B. Romaniuk M. A. Choi H. Labovsky V. Otaeugi J. Chasseing N. A. 2013: Review: Mesenchymal stem cells and their use in therapy: What has been achieved ? Differentiation 85 (1—2) 1—10.

  • 9. Godbey W. T. Hindy B. S. S. Sherman M. E. Atala A. 2004: A novel use of centrifugal force for cell seeding into porous scaffolds. Biomaterials 25 2799—2805. DOI: 10.1016/j.biomaterials.2003.09.056.

  • 10. Gogolewski S. 2000: Bioresorbable polymers in trauma and bone surgery. Injury 31 S‒D28‒32.

  • 11. Griffon D. J. Sedighi M. R. Schaeffer D. V. Eurell J. A. Johnson A. L. 2006: Chitosan scaffolds: Interconnective pore size and cartilage engineering. Acta Biomaterialia 2 (3) 313—320.

  • 12. Harvanova D. Rosocha Bakos D. Švihla R. Vasko G. Hornak S. et al. 2009: Collagen/hyaluronan membrane as a scaffold for chondrocyte cultivation. Biologia 64 (5) 1032— 1038. DOI: 10.2478/s11756-009-0171-y.

  • 13. Chen Y. L. Lee H. P. Chan H. Y. Sung L. Y. Chen H. CH. Hu Y. CH. 2007: Composite chondroitin-6-sulfate/dermatan sulfate/chitosan scaffolds for cartilage tissue engineering. Biomaterials 28 (14) 2294—2305. DOI: 10.1016/j.biomaterials.2007.01.027.

  • 14. Chen G. Akahane D. Kawazoe N. Yamamoto K. Tateishi T. 2008: Chondrogenic differentiation of mesenchymal stem cells in a leakproof collagen sponge. Mat. Sci. Engin. C 28 (1) 195—201. DOI: 10.1016/j.msec.2006.12.009.

  • 15. Cho J. H. Kim S. H. Park K. D. Jung M. CH. Yang W. I. Han S. W. et al. 2004: Chondrogenic differentiation of human mesenchymal stem cells using a thermosensitive poly(N-isopropylacrylamide) and water-soluble chitosan copolymer. Biomaterials 25 (26) 5743—5751. DOI: 10.1016/j.biomaterials.2004.01.051.

  • 16. Johnstone B. Hering T. M. Caplan A. Goldberg V. M. Yoo J. U. 1998: In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res. 238 (1) 265—272. DOI: 10.1006/excr.1997.3858.

  • 17. Kessler M. W. Grande D. A 2008: Review: Tissue engineering and cartilage. Organogenesis 4 (1) 28—32. https://doi.org/10.4161/org.6116.

  • 18. Liu C. Xia Z. Czernuszka J. T 2007: Design and development of three-dimensional scaffolds for tissue engineering. Chem. Eng. Res. Design 85(A7) 1051—1064.

  • 19. Madihally S. V. Matthew H. W. T. 1999: Porous chitosan scaffolds for tissue engineering. Biomaterials 20 (12) 1133— 1142. DOI: 10.1016/S0142-9612(99)00011-3.

  • 20. Malafaya P. B. Silva G. A. Reis R. L. 2007: Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv. Drug Del. Rev. 59 (4—5) 207—233. DOI:10.1016/j.addr.2007.03.012.

  • 21. Medvecky L. Giretova M. Stulajterova R. 2014: Properties and in vitro characterization of polyhydroxybutyratechitosan scaffolds prepared by modified precipitation method. J. Mat. Sci.: Mat. Med. 25 (3) 777—789. DOI:10.1007/s10856-013-5105-0.

  • 22. Mollon B. Kandel R. Chahai J. Theodoropoulos J. 2013: The clinical status of cartilage tissue regeneration in humans. Osteoarthritis and Cartilage 21 (12) 1824—1833. DOI: 10.1016/j.joca.2013.08.024.

  • 23. Muzzarelli R. A. A. 2009: Review: Chitins and chitosans for the repair of wounded skin nerve cartilage and bone. Carb. Pol. 76 (2) 167—182. DOI: 10.1016/j.carbpol.2008.11.002.

  • 24. Nair S. L. Laurencin C. T. 2007: Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32 762—798. http://dx.doiorg/10.1016/j.progpolymsci.2007.05.017.

  • 25. Nehrer S. Breinan H. A. Ramappa A. Young G. Shortkroff S. Louie L. K. et al. 1997: Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes. Biomaterials 18 (11) 769—776.

  • 26. Pelttari K. Steck E. Richter W. 2008: The use of mesenchymal stem cells for chondrogenesis injury Int. J. Care Inj. 39S1 S58—S65. DOI:10.1016/j.injury.2008.01.038.

  • 27. Puppi D. Chiellini F. Piras A. M. Chiellini E. 2010: Polymeric materials for bone and cartilage repair. Progress in Polymer Science 35 403—444.

  • 28. Solchaga L. A. Penick K. J. Welter J. F. 2011: Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells: Tips and tricks. Methods Mol. Biol. 698 253—278. DOI: 10.1007/978-1-60761-999-4_20.

  • 29. Tan H. Chu C.R. Payne K. A. Marra K. G. 2009: Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Bio-materials 30(13) 2499—2506. DOI: 10.1016/j.biomaterials.2008.12.080.

  • 30. Tan L. Ren Y. Kuijer R. 2012: A 1-min method for homogenous cell seeding in porous scaffolds. J. Biomat. Applic. 877—898. DOI: 10.1177/0885328210389504.

  • 31. Tang X. Fan L. Pei M. Zeng L. Ge Z. 2015: Evolving concepts of chondrogenic differentiation: history state-ofthe-art and future perspectives. Eur. Cells Mater. 30 12—27.

  • 32. Vater C. Kasten P. Stiehler M. 2011: Review. Culture media for the differentiation of mesenchymal stromal cells. Acta Biomaterialia 7 (2) 463—477. DOI: 10.1016/j.actbio.2010.07.037.

  • 33. Wang Y. Bian Y. Z. Wu Q. Chen G. Q. 2008: Evaluation of three-dimensional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Bio-materials 29 (19) 2858—2868. DOI: 10.1016/j.biomaterials.2008.03.021.

  • 34. Yamane S. Iwasaki N. Majima T. Fukanoshi T. Masuko T. Harada K. et al. 2005: Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials 26 (6) 611—619. DOI: 10.1016/j.biomaterials.2004.03.013

  • 35. Yang B. Li X. Y. Shi S. Kong X. Y. Guo G. Huang M. J. et al. 2010: Preparation and characterization of a novel chitosan scaffold. Carb. Pol. 80 (3) 860—865.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 98 98 8
PDF Downloads 97 97 2