Chemical composition and fiber properties of fast-growing species in Latvia and its potential for forest bioindustry

Open access

Abstract

Bioenergy, including energy from wood, currently provides about 9–13% of the total global energy supply. Every fibre of fast-growing wood has a value for its potential use as a material in both pulp and paper and wood chemical industries. The aim of this study was to assess the chemical composition and fibre’s properties of fast-growing species in Latvia – aspen, hybrid aspen, lodgepole pine, poplar and willow. Results showed a variation of cellulose, lignin, extractives and ash contents among the species. Kraft pulp yield and amount of residual lignin were measured and properties of pulp fibres determined. Form factor and fine content in pulp were measured. Poplar and aspen wood had the highest content of cellulose, while lodgepole pine had the highest lignin content in wood and the longest kraft pulp fibres. Willow had 20% of fines in pulp. Individual results suggest the most suitable application of each species.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Abolina E. Volk T.A. Lazdina D. 2015. GIS based agricultural land availability assessment for the establishment of short rotation woody crops in Latvia. – Biomass and Bioenergy 72 263–272.

  • Ai J. Tschirner U. 2010. Fiber length and pulping characteristics of switchgrass alfalfa stems hybrid poplar and willow biomasses. – Bioresource Technology 101(1) 215–221.

  • Bārdule A. Lazdiņa D. Bārdulis A. Lazdiņš A. Vīksna A. 2012. Utilization of wood ash sewage sludge and digestate in short rotation bioenergy plantation in Latvia. – Book of Abstracts of the 17th International Conference “EcoBalt 2012” Latvia Riga Oct. 18–19 2012. 15 pp.

  • Caslin B. Finnan J. McCracken A. 2012. Willow varietal identification guide. Teagasc Carlow Ireland. 64 pp.

  • Daugaviete M. Lazdiņa D. 2014. Sustainable management of plantation forest. (Plantāciju meži ilgtspējīgai saimniekošanai). – Agrotops 2–4. (In Latvian).

  • Dong C. Zhang Z. Lu Q. Yang Y. 2012. Characteristics and mechanism study of analytical fast pyrolysis of poplar wood. – Energy Conversion and Management 57 49–59.

  • Elder T. 2004. Non-wood products: Chemicals from Wood. Encyclopedia of Forest Sciences. USDA – LA USA Forest Service Pineville 607–612.

  • Fengel D. Wegener G. 2003. Wood – chemistry ultrastructure reaction. Berlin Walter de Gruyter. 613 pp.

  • Francis R.C. Hanna R.B. Shin S.-J. Brown A.F. Riemenschneider D.E. 2006. Papermaking characteristics of three Populus clones grown in the north-central United States. – Biomass Bioenergy 30 803–808.

  • Jansons A. Zurkova S. Lazdina D. Zeps M. 2014. Productivity of poplar hybrid (Populus balsamifera × P. laurifolia) in Latvia. – Agronomy Research 12(2) 469–478.

  • Kim J.Y. Oh S. Hwang H. Kim U.J. Choi J.W. 2013. Structural features and thermal degradation properties of various lignin macromolecules obtained from poplar wood (Populus albaglandulosa). – Polymer Degradation and Stability 98(9) 1671–1678.

  • Lazdina D. 2009. Using of waste water sewage sludge in short rotation willow coppice. Resume of PhD Thesis. Jelgava Latvia University of Agriculture. 58 pp.

  • Lazdina D. 2010. Willows for production of bioenergy. – Līviņa A. (ed.). Solutions on harmonizing sustainability and nature protection with socioeconomic stability. Vidzeme University of Applied Sciences 95–101.

  • Lazdiņa D. Bārdule A. Daugaviete M. Liepiņš J. Rancāne S. Bārdulis A. Makovskis K. Zeps M. 2012. First results of growth characteristics of hybrid aspen birch and grey alder fertilized plantation on former farmland. Biological Reactions of Forests to Climate Change and Air Polution. Lithuania Kaunas. 202 pp.

  • Long H. Li X. Wang H. Jia J. 2013. Biomass resources and their bioenergy potential estimation: A review. – Renewable and Sustainable Energy Reviews 26 344–352.

  • Moon R.J. Martini A. Nairn J. Simonsen J. Younblood J. 2011. Cellulose nano-materials review: Structure properties and nanocomposites. – Chemical Society Reviews 40 3941–3994.

  • Neimane I. Lazdiņš A. Plūme I. 2011. Country policy assessment report on bioenergy. Bioenergy Promotion. A Baltic Sea Region project WP3 Policy Task 3.3. 38 pp.

  • Pauler N. 2012. Paper Optics. Sweden Elanders AB Lorenzen &Wettre. 189 pp.

  • Pliura A. Zhang S.Y. MacKay J. Bousquet J. 2007. Genotypic variation in wood density and growth traits of poplar hybrids ar four clonal trials. – Forest Ecology and Management 238 92–106.

  • Pye E.K. 2006. Industrial Lignin Production and Applications. – Kamm B. Gruber P.R. Kamm M. (eds.). Biorefineries – Industrial Processes and Products. Wiley-VCH Verlag GmbH & Co Weinheim 165–200.

  • Šāble I. Grīnfelds U. Jansons Ā. Vīķele L. Irbe I. Verovkins A. Bāders E. Treimanis A. 2012a. Suitability of Scots pine (Pinus sylvestris) and lodgepole pine (Pinus contorta) wood for paper production: comparative analysis. (Parastās priedes (Pinus sylvestris) un Klinškalnu priedes (Pinus contorta) koksnes piemērotības papīra ražošanai salīdzinošā analīze). – Mezzinatne 26(59) 155–166. (In Latvian with English summary).

  • Šāble I. Grīnfelds U. Zeps M. Irbe I. Jansons Ā. Treimanis A. 2012b. Papermaking characteristics of kraft pulp from hybrid aspen clones. – Proceedings of 12th European Workshop on Lignocellulosics and Pulp Finland Aug. 2012. Helsinki Espoo University of Helsinki 500–503.

  • Sable I. Grinfelds U. Zeps M. Irbe I. Noldt G. Jansons A. Treimanis A. Koch G. 2013b. Chemistry and kraft pulping of seven hybrid aspen clones. Dimension measurements on the vessels and UMSP of the cell walls. – Holzforschung 67(5) 505–510.

  • Sable I. Grinfelds U. Zeps M. Treimanis A. 2013a. Hybrid aspen wood – precious raw material for products with high added value. – Book of Abstracts of International Baltic Sea Region Scientific Conference „Interdisciplinary Research for Higher Socioecenomic Value of Forests” Latvia Riga June 2013. Salaspils LSFRI Silava 81–82.

  • Sannigrahi P. Ragauskas A.J. Tuskan G.A. 2010. Poplar as a feedstock for biofuels: A review of compositional characteristics. – Biofuels Bioproducts Biorefining 4 209–226.

  • Treimanis A. Grinfelds U. Skute M. Gailis A. Zeps M. 2006. Comparative study of wood and pulp fibres obtained from natural forest and plantation aspen fibres. – Proceedings of 9th European Workshop on Lignocellulosics and Pulp Austria Aug. 2006. Vienna University of Natural Resources and Life Sciences 561–563.

  • Tullus A. Rytter L. Tullus T. Weih M. Tullus H. 2011. Short-rotation forestry with hybrid aspen (Populus tremula L. x P. tremuloides Michx.) in Northern Europe. – Scandinavian Journal of Forest Research 27 10–29.

  • Vanneste J. Van Gerven T. Van der Putten E. Van der Bruggen B. Helsen L. 2011. Energetic valorization of wood waste: Estimation of the reduction in CO2 emissions. – Science of the Total Environment 409(19) 3595–3602.

  • Zeps M. Auzenbaha D. Gailis A. Treimanis A. Grīnfelds U. 2008. Comparison and selection of clones of hybrid aspen. (Hibrīdapšu (Populus tremuloides × Populus tremula) klonu salīdzināšana un atlase). – Mezzinatne 18(51) 19–34. (In Latvian with English summary).

  • Zeps M. Šāble I. Grīnfelds U. Jansons Ā. Irbe I. Treimanis A. 2012. Variation of hybrid aspen (Populus tremuloides Michx. × Populus tremula L.) and common aspen (Populus tremula L.) wood and Kraft pulp fibres properties at age 20 years. (Apšu hibrīdu (Populus tremuloides Michx. × Populus tremula L.) un parastās apses (Populus tremula L.) koksnes un sulfātcelulozes šķiedru īpašības 20 gadu vecumā). – Mezzinatne 26(59) 145–154. (In Latvian with English summary).

Search
Journal information
Impact Factor


CiteScore 2018: 1.24

SCImago Journal Rank (SJR) 2018: 0.331
Source Normalized Impact per Paper (SNIP) 2018: 0.743

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 365 135 5
PDF Downloads 199 100 1