MERIS GPP/NPP product for Estonia: II. Complex meteorological limiting factor and optimum leaf area index / MERIS’e GPP/NPP tulem Eesti jaoks: II. Kompleksne meteoroloogiline piirangutegur ja optimaalne lehepinnaindeks

Tiit Nilson 1 , Mattias Rennel 2 , 3 ,  and Mait Lang 1 , 4
  • 1 Tartu Observatory, 61602 Tõravere, Tartumaa, Estonia
  • 2 AS Regio, Riia 24, 51010 Tartu, Estonia
  • 3 Faculty of Science and Technology, Department of Bio- and Environmental Physics, Tartu University, Ülikooli 18, 51014 Tartu, Estonia
  • 4 Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, 51014 Tartu, Estonia

Abstract.

The merits and possible problems of the light use efficiency-concept based GPP/NPP models applied together with satellite images and meteorological data to quantitatively understand the role of different meteorological factors in forest productivity are analysed. A concept of the complex meteorological limiting factor for plant productivity is introduced. The factor includes the effects of incoming photosynthetically active radiation as well as the temperature and water limiting factors. Climatologically averaged seasonal courses of the complex meteorological limiting factor derived from the records of two contrasting meteorological stations in Estonia - inland Tartu/Tõravere and coastal Sõrve - are shown. Leaf phenology, here described via the seasonal course of leaf area index (LAI), is interpreted as a possible means to maximise the carbon gain under particular meteorological conditions. The equations for the optimum seasonal course of LAI as derived from the NPP model are presented. As the daily adjustment of plant LAI to sudden changes in meteorological conditions is not possible, several approximate strategies for LAI seasonal course to maximise the yearly NPP of vegetation are analysed. Typical optimal courses of LAI show some seasonal asymmetry resulting in lower values of LAI in the second half of the vegetation period due to higher air temperatures and respiration costs. Knowledge about optimum LAI courses has a cognitive value, but can also be used as the simulated LAI courses in several models when the measured LAI values are not available. As the considered GPP/NPP models fail to adequately describe the local trends in forest and agricultural productivity in Estonia, the ways to improve the model’s performance are shown.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Baret, F., Bacour, C., Béal, D.,Weiss, M., Berthelot, B., Regner, P. 2006. Algorithm Theoretical Basis Document for MERIS Top of canopy Land Products (TOC_VEG), version 3. INRA-CSE, Avignon.

  • Caldararu, S., Purves, D.W., Palmer, P.I. 2013. Phenology as a strategy for carbon optimality: a global model. - Biogeosciences Discussions, 10, 15107-15151.

  • Chen, J.M. 1996. Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands. - Agricultural and Forest Meteorology, 80(2-4), 135-163.

  • Climate Normals. 2015. Climate Normals, 1981-2010. Web page of Estonian Weather Service. [WWW Document]. - URL http://www.ilmateenistus.ee/kliima/kliimanormid/ohuniiskus/?lang=en [Accessed 15 October 2014].

  • De Beurs, K.M., Henebry, G.M. 2010. Spatio-temporal statistical methods for modeling land surface phenology. - Hudson, I.L., Keatley, M.R. (eds.). Phenological Research. Methods for Environmental and Climate Change Analysis. Springer Books, New York.

  • Eenmäe, A., Nilson, T., Lang, M. 2011. A note on meteorological variables related trends in the MODIS NPP product for Estonia. - Forestry Studies / Metsanduslikud Uurimused, 55, 58-61.

  • Friend, A.D., Stevens, A.K., Knox, R.G., Cannell, M.G.R. 1995. A process-based terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0). - Ecological Modelling, 95, 249-287.

  • Gobron, N., Aussedat, O., Pinty, B., Taberner, M., Verstraete, M. 2004. Medium Resolution Imaging Spectrometer (MERIS). Level 2 Land Surface Products. Algorithm Theoretical Basis Document. Institute of Environmental Sustainability JRC, Publication No. EUR 21387 EN.

  • Heinsch, F.A., Reeves, M., Votava, P., Kang, S., Milesi, C., Zhao, M., Glassy, J., Jolly,W.M., Loehman, R., Bowker, C.F., Kimball, J.S., Nemani, R.R., Running, S.W. 2003. User’s guide: GPP and NPP (MOD17A2/A3) products. NASA MODIS land algorithm. Version 2.0, 1-57.

  • Jönsson, P., Eklundh, L. 2002. Seasonality extraction by function fi tting to time series of satellite sensor data. - IEEE Transactions on Geoscience and Remote Sensing, 40, 1824−1832.

  • Kadaja, J., Keppart, L. 2014. Analysis of weather conditions. Estonian Ministry of environment. Contract no. 4-1.1/14/25 report. [WWW Document]. - URL http://www.envir.ee/sites/default/files/vaetiste_laotamise_optimaalse_sugisese_ajalise_piirangu_eksperthinnang.pdf [Accessed 1 September 2014]. (In Estonian).

  • Keenan, T.F., Baker, I., Barr, A., Ciais, P., Davis, K., Dietze, M., Dragoni, D., Gough, C.M., Grant, R., Hollinger, D., Hufkens, K., Poulter, B., Mc- Caughey, H., Raczka, B., Ryu, Y. Schaefer, K., Tian, H., Verbeeck, H., Zhao, M., Richardson, A.D. 2012. Terrestrial biosphere model performance for inter-annual variability of land-atmosphere CO2 exchange. - Global Change Biology, 18, 1971-1987.

  • Kucharik, C.J., Foley, J.A., Delire, C., Fisher, V.A., Coe, M.T., Lenters, J.D., Young-Molling, C., Ramankutty, N., Norman, J.M., Gower. S.T. 2000. Testing the performance of a Dynamic Global Ecosystem Model: Water balance, carbon balance, and vegetation structure. - Global Biogeochemical Cycles, 14(3), 795-825.

  • Lang, M., Traškovs, A., Gulbe, L. 2013. Assessment of NTSG MODIS NPP product for forests in Kurzeme region, Latvia. - Forestry Studies / Metsanduslikud Uurimused, 58, 26-36.

  • McMaster, G.S., Wilhelm, W.W. 1997. Growing degree- days: one equation, two interpretations. - Agricultural and Forest Meteorology, 87, 291-300.

  • Monteith, J. 1972. Solar radiation and productivity in tropical ecosystems. - Journal of Applied Ecology, 9, 747-766.

  • Monteith, J. 1977. Climate and effi ciency of crop production in Britain. - Philosophical Transactions of the Royal Society of London. Ser. B, 277-294.

  • Mu, Q., Zhao, M., Heinsh, F.A., Liu, M., Tian, H., Running, S.W. 2007. Evaluating water stress controls on primary production in biogeochemical and remote sensing based models. - Journal of Geophysical Research, vol. 112, G01012, doi:10.1029/2006JG000179.

  • Nilson, T., Rennel, M., Luhamaa, A., Hordo, M., Olesk, A., Lang, M. 2012. MERIS GPP/NPP product for Estonia: I. Algorithm and preliminary results of simulation. - Forestry Studies / Metsanduslikud Uurimused, 56, 56-78.

  • Nilson, T., Lang, M., Lükk, T., Eenmäe, A. 2008. Remote sensing of forest productivity. - Väljataga, K., Kaukver, K. (eds.). Kaugseire Eestis. (Remote Sensing in Estonia). Tartu Observatoorium, Keskkonnaministeeriumi Info- ja Tehnokeskus, Tallinn, 78-90. (In Estonian).

  • Ross, J. 1981. The radiation regime and architecture of plant stands. Junk Publ., The Netherlands, 391 pp.

  • Russak, V., Kallis, A. 2003. Eesti kiirguskliima teatmik (Handbook of Estonian Solar Radiation Climate). EMHI, Tallinn, 384 pp. (In Estonian).

  • Schwalm, C.R. et al. 2010. A model-data intercomparison of CO2 exchange across North America: Results from the North American Carbon Program site synthesis. - Journal of Geophysical Research: Biogeosciences (2005-2012), 115, Issue G3, doi:10.1029/2009JG001229.

  • Sitch, S., Smith, B., Prentice, I.C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J.O., Levis, S., Lucht, W., Sykes, M.T., Thonicke, K., Venevsky, S. 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ Dynamic Global Vegetation Model. -Global Change Biology, 9, 161-185.

  • Sveshnikov, A.A. 1968. Problems in probability theory, mathematical statistics and theory of random functions. Dover Publications, NY. 501 pp.

  • Tarand, A., Jaagus, J., Kallis, A. 2013. Eesti kliima minevikus ja tänapäeval. (Estonian climate in the past and today). Tartu, Tartu Ülikooli Kirjastus. (In Estonian).

  • Turner, D.P., Ollinger, S., Smith, M.-L., Krankina, O., Gregory, M. 2004. Scaling net primary production to a MODIS footprint in support of Earth observing system product validation. - International Journal of Remote Sensing, 25 (10), 1961-1979.

  • Vanninen, P., Mäkelä, A. 1999. Fine root biomass of Scots pine stands differing in age and soil fertility in southern Finland. - Tree Physiology, 19, 823-830 T. Nilson et al.

OPEN ACCESS

Journal + Issues

Search