The effect of temperature and humidity changes on insects development their impact on forest ecosystems in the expected climate change

Tomasz Jaworski 1  and Jacek Hilszczański 1
  • 1 Forest Research Institute, Department of Forest Protection, Sękocin Stary, ul. Braci Leśnej 3, 05–090 Raszyn, Poland.


Ongoing climate change is mainly evident as increased in average temperature. It is expected to have a significant impact on world’s biomes, with forest ecosystems especially vulnerable to these changes. The effect of climate change on forests is both indirect, through its impact on various tree species of different ecological requirements, and direct, through its impact on all living components of the forest ecosystem. Among the latter, insects are the group of the greatest importance, including species detrimental to forest health. The impact of climate change on forest insects may be reflected in their distribution, phenology, activity, number of generations and, indirectly, through impact on their natural enemies. Predicting the future direction and pace of the climate change, as well as direct and indirect consequences of its effect on forest insects is difficult and often subject to considerable inaccuracy. The paper presents a review of data from the published literature in this area of study. The influence of the basic climate parameters, temperature and humidity, on forest herbivore insects is discussed, particularly in the context of the most probable scenarios of climate change, i.e. the gradual increase in the average temperature. Observed and projected impacts of climate change in relation to the influence of herbivorous insects on forest ecosystems are characterized. We present some of the possible adaptation strategies of forest management to the expected climate changes.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Asch, van, M. 2007. Seasonal synchronization between trophic levels under climate change: genetic and environmental effects on winter moth egg hatching. Dissertations University Groningen.

  • Awmack C. S., Woodcock C. M., Harrington R. 1997. Climate change may increase vulnerability of aphids to natural enemies. Ecological Entomology, 22: 366-368.

  • Ayres M. P., Lombardero M. J. 2000. Assessing the consequences of global change for forest disturbance from herbivores and pathogens. The science of the total environment, 262 (3): 263-286.

  • Bale J. S., Masters G. J., Hodkinson I. D., Awmack C., Bezemer T. M., Brown V. K., Butterfield J., Buse A., Coulson J.C., Farrar J., Good J. E. G., Harrington R., Hartley S., Jones T. H, Lindroth R. L., Press M. C., Symioudis I., Waltt A. D., Whittaker J. B. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology, 8 (1): 1-16.

  • Battisti A. 2008. Forests and climate change - lessons from insects. iForest, 1: 1-5. [20.10.2010].

  • Battisti A., Stastny M., Buffo E., Larsson S. 2006. A rapid altitudinal range expansion in the pine processionary moth produced by the 2003 climatic anomaly. Global Change Biology, 12 (4): 662-671.

  • Battisti A., Stastny M., Netherer S., Robinet C., Schopf A., Roques A., Larsson S. 2005. Expansion of Geographic Range in The Pine Processionary Moth Caused by Increased Winter Temperatures. Ecological Applications, 15: 2084-2096.

  • Buffo E., Battisti A., Stastny M., Larsson S. 2007. Temperature as a predictor of survival of the pine processionary moth in the Italian Alps. Agricultural and Forest Entomology, 9: 65-72.

  • Buse A., Good J. E. G., Dury S., Perrins C.M. 1998. Effects of elevated temperature and carbon dioxide on the nutritional value of leaves of oak (Quercus robur L.) as food for the Winter Moth (Operophtera brumata L.). Functional Ecology, 12: 742-749.

  • Capdevila-Argüelles L., Zilletti B. 2008. A perspective on climate change and invasive alien species. Convention on the conservation of European wildlife and natural habitats. invertebrates/inf05rev_2008_en.pdf [20.10.2010]

  • Chmura D. J., Howe G. T., Anderson P. D, St. Clair J. B. 2010. Przystosowanie drzew, lasów i leśnictwa do zmian klimatycznych [Adaptation of trees, forests and forestry to climate change]. Sylwan, 154 (9): 587-602.

  • Coviella C. E., Trumble J. T. 1999. Effects of Elevated Atmospheric Carbon Dioxide on Insect-Plant Interactions. Conservation Biology, 13 (4): 700-712.

  • Currano E. D., Wilf P., Wing W. L., Labandeira C. C., Lovelock E. C., Royer D. L. 2008. Sharply increased insect herbivory during the Paleocene-Eocene Thermal Maximum. Proceedings of the National Academy of Sciences, 105 (6): 1960-1964.

  • DeLucia E. H., Casteel C. L., Nabity P. D., O’Neill B. F. 2008. Insects take a bigger bite out of plants in a warmer, higher carbon dioxide world. Proceedings of the National Academy of Sciences, 105: 1781-1782.

  • Dury S. J., Good J. E. G., Perrins C. M., Buse A., Kaye T. 1998. The effects of increasing CO2 and temperature on oak leaf palatability and the implications for herbivorous insects. Global Change Biology, 4: 55-61.

  • Esper J., Büntgen U., Frank D. C., Nievergelt D., Liebhold A. 2006. 1200 years of regular outbreaks in alpine insects. Proceedings of the Royal Society, Series B, 274: 671-679.

  • Hill J. K., Thomas C. D., Blakeley D. S. 1999. Evolution of flight morphology in a butterfly that has recently expanded its geographic range, Oecologia, 121:165-170.

  • Hódar J. A., Zamora R. 2004. Herbivory and climatic warming: a Mediterranean outbreaking caterpillar attacks a relict, boreal pine species. Biodiversity and Conservation, 13: 493-500.

  • Huberthy A. F., Denno R. F. 2004. Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology, 85 (5): 1383-1398.

  • IPCC. 2007. Intergovernmental Panel on Climate Change. Fourth Assessment Report. [12.08.2013].

  • Jepsen J. U., Hagen S. B., Ims R. A., Yoccoz N. G. 2008. Climate change and outbreaks of the geometrids Operophtera brumata and Epirritia autumnata in subarctic birch forest: evidence of a recent outbreak range expansion. Journal of Animal Ecology, 77 (2): 257-264.

  • Jönsson A. M., Harding S., Bärring L., Ravn H. P. 2007. Impact of climate change on the population dynamics of Ips typographus in southern Sweden. Agricultural and Forest Meteorology, 146: 70-81.

  • Karolewski P., Grzebyta J., Oleksyn J., Giertych M. J. 2007. Effects of temperature on larval survival rate and duration of development of Lymantria monacha (L.) on needles of Pinus silvestris (L.) and of L. dispar (L.) on leaves of Quercus robur (L.). Polish Journal of Ecology, 55 (3): 595-600.

  • Kuokkanen K., Julkunen-Tiitto R., Keinänen M., Niemelä P., Tahvanainen J. 2001. The effect of elevated CO2 and temperature on the secondary chemistry of Betula pendula seedlings. Trees, 15: 378-384.

  • Laryšev N. K. 1968. Dopolnienije nadzoru za monashenkoj. Lesnoje Chozâjstvo, 9: 66-67.

  • Logan J. A., Régnière J., Powell J. A. 2003. Assessing the impacts of global warming on forest pest dynamics. Frontiers in Ecology and the Environment, 1 (3): 130-137.

  • Menéndez R. 2007. How are insects responding to global warming. Tijdschrift voor Entomologie, 150: 355-365.

  • Moore B. A., Allard G. B. 2008. Climate change impacts on forest health. Forest Health & Biosecurity Working Papers FBS/34E. Forest Resources Development Service, Forest Management Division, FAO, Rome.

  • Netherer S., Schopf A. 2010. Potential effects of climate change on insect herbivores in European forests - General aspects and the pine processionary moth as specific example. Forest Ecology and Management, 259: 831-838.

  • Nupponen H., Salokannel S., Thomsses P. -M., Vanhatal A. 2010. The impact of climate change on invasive alien insect distribution and diversity. [20.10.2010].

  • Parmesan C. 1996. Climate change and species’ range. Nature, 382: 765-766.

  • Parmesan C., Yohe G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421: 37-42.

  • Pawłowski J. 1995. Zmiany faunistyczne w Polsce od końca XVII wieku w aspekcie przeszłych i przewidywanych zmian klimatu [Faunistic changes in Poland till the end of the XVIIth century in the aspect of the climate]. Sylwan, 139 (3): 5-22.

  • Petzoldt C., Seaman A. 2006. Climate change effects on insects and pathogens. Climate Change and Agriculture: Promoting Practical and Profitable Responses, III: 6-16. [22.10.2010].

  • Rezolucja H4. Strategie dla procesu długofalowego przystosowania lasów w Europie do zmian klimatu. II ministerialna konferencja nt. ochrony lasów w Europie, 16-17 czerwca 1993. Helsinki, Finlandia. http://www2. [12.11.2010] .

  • Régnière J. 2009. Predicting insect continental distributions from species physiology. Unasylva, 60 (1/2): 37-42.

  • Rouault G., Candau J.-N., Lieutier F., Nageleisen L.-M., Martin J.-C., Warzée N. 2006. Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. Annals of Forest Science, 63 (6): 613-624.

  • Ryszkowski L., Kędziora A., Bałazy S. 1995. Przewidywane zmiany globalne klimatu a lasy i zadrzewienia krajobrazu rolniczego [The predicted effect of global changes on mid field forests and shelterbelts in agricultural landscape]. Sylwan, 139 (2): 19-32.

  • Sadowski M. 1996. Przewidywane zmiany klimatu i ich przyrodnicze, społeczne i polityczne konsekwencje [Predicted changes of the climate and their environmental, social, and political consequences]. Sylwan, 140 (5): 83-103.

  • Spittlehouse D.L., Steward R.B. 2003. Adaptation to climate change in forest management. BC Journal of Ecosystems and Management, 4 (1): 1-11. [10.11.2010].

  • Szujecki A. 1998. Entomologia leśna. Warszawa, Wyd. SGGW.

  • Šefrová H. 2003. Invasions of Lithocolletinae species in Europe - causes, kinds, limits and ecological impact (Lepidoptera, Gracillariidae). Ekologia (Bratislava), 22 (2): 132-142.

  • Śliżyński K. 1970. Żerowanie brudnicy mniszki - Ocneria monacha L. (Orgyidae, Lepidoptera) na kwiatostanach męskich sosny - Pinus silvestris L. Polskie Pismo Entomologiczne, 40 (4):871-876.

  • Tenow O., Nilssen A. C., Holmgren B., Elverum. F. 1999. An insect (Argyresthia retinella, Lep. Yponomeutidae) outbreak in northern birch forests, released by climatic changes? Journal of Applied Ecology, 36: 111-122.

  • Thomas F. M., 2008. Recent advances in cause-effect research on oak decline in Europe. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 3, 037. [24.06.2013].

  • Thomas C. D., Bodsworth E. J., Wilson R. J., Simmons A. D., Davies Z. G., Musche M., Conradt L. 2001. Ecological and evolutionary processes at expanding range margins. Nature, 411: 577-581.

  • Vanhanen H., Veteli T. O., Päivinen S., Kellomäki S., Niemelä P. 2007. Climate Change and Range Shifts in Two Insect Defoliators: Gypsy Moth and Nun Moth - a Model Study. Silva Fennica, 41 (4): 621-638.

  • Virtanen T., Neuvonen S., Nikula A., Varama M., Niemelä P. 1996. Climate Change and the Risks of Neodiprion sertifer Outbreaks on Scots Pine. Silva Fennica, 30 (2-3): 169-177.

  • Visser M. E., Holleman L. J. M. 2001. Warmer spring disrupt the synchrony of oak and winter moth phenology. Proceedings of the Royal Society. London. B, 268: 289-294.

  • Walther G.-R., Post E., Convey P., Menzel A., Parmesan C., Beebee T. J. C., Fromentis J.-M., Hoegh-Guldberg O., Bairlein F. 2002. Ecological responses to recent climate change. Nature, 416: 389-395.

  • Wigley T. M. L. 1993. Climate change and forestry. Commonwealth Forestry Review, 72 (4): 256-264.

  • Williams D. W., Liebhold A. M. 1995a. Forest defoliators and climatic change: potential changes in spatial distribution of outbreaks of western spruce budworm (Lepidoptera: Tortricidae) and gypsy moth (Lep.: Lymantriidae). Environmental entomology, 24 (1): 1-9.

  • Williams D. W., Liebhold A. M. 1995b. Herbivorous insects and global change: potential changes in the spatial distribution of forest defoliator outbreaks. Journal of Biogeography, 22 (4/5): 665-671.

  • Withers T. M., Keena M. A. 2001. Lymantria monacha (nun moth) and L. dispar (gypsy moth) survival and development on improved Pinus radiata. New Zealand Journal of Forestry Science, 31 (1): 66-77.


Journal + Issues