Modeling light conditions on the forest floor

Leszek Bolibok 1 , Michał Brach 1 , Stanisław Drozdowski 1 ,  and Michał Orzechowski 1
  • 1 Warsaw University of Life Sciences – SGGW, Faculty of Forestry; 1 Department of Forest Silviculture; 2 Department of Forest Management Planning, Geomatics and Forest Economics, ul. Nowoursynowska 159, 02–776 Warszawa, Poland.


Contemporary models of light conditions on the forest floor can be divided into two categories: undercanopy models that allow the light conditions in a stand under the canopy to be simulated, and models that take into account shielding from the side. Under-canopy models precisely estimate the availability of wavelengths of light spatially distributed under the canopy of stands: however, these models require a large amount of data on the spatial structure of forest stands. The other class of models describe the light conditions on a particular open surface. These incorporate shielding from the side and are easier to use as they require less data than under-canopy models. In practice, in forest conditions, such models require data on the size, shape and geographical location of surveyed surfaces (e.g. gaps and cut areas) and on the height of the surrounding stand. Often, these data are available in databases, such as the State Forest Information System (SKP), orcan otherwise be obtained relatively easily (and inexpensively). Compared to under-canopy models, these models provide a cheap way to obtain useful information on variation in the light environment that affects the microclimate for regenerating plants on clearcuts and canopy gaps.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bartelink H.H. 1998. Radiation interception by forest trees: a simulation study on effects of stand density and foliage clustering on absorption and transmission. Ecological Modelling, 105: 213-225.

  • Bolibok L. 2010. Zastosowanie zdjęć hemisferycznych do opisu struktury warstwy koron i modelowania warunków świetlnych pod okapem drzewostanów [The use of hemispherical photographs for canopy description and light condition modeling in tree stands]. Leśne Prace Badawcze, 71 (2): 175-188.

  • Bolibok L., Andrzejczyk T. 2008. Analiza zagęszczenia samosiewów brzozy i sosny na gniazdach na podstawie modelu promieniowania słonecznego [Analysis of birch and pine seedling density in regeneration gaps on the basis of solar radiation model]. Sylwan, 152: 10-19.

  • Bonhomme R. 1993. The solar radiation: characterization and distribution in the canopy, in: Crop Structure and Light Microclimate: Characterization and Applications (eds. C. Varlet-Grancher, R. Bonhomme, H. Sinoquet). Paris, INRA, 17-28. ISBN 2-380-0448-2.

  • Canham C.D., Burbank D.H., Pacala S.W., Finzi A.C. 1994. Causes and consequences of resource heterogeneity in forests: interspecific variation in light transmission by canopy trees. Canadian Journal of Forest Research, 24: 337-349.

  • Canham C.D., Denslow J.S., Platt W.J., Runkle J.R., Spies T.A., White P.S. 1990. Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests. Canadian Journal of Forest Research, 20: 620-631.

  • Canham C.D., Coates K.D., Bartemucci P., Quaglia S. 1999. Measurement and modeling of spatially-explicit variation in light transmission through interior cedar-hemlock forests of British Columbia. Canadian Journal of Forest Research, 29: 1775-1783.

  • Cannell M.G.R., Grace J. 1993. Competition for light: detection, measurement, and quantification. Canadian Journal of Forest Research, 23: 1969-1979.

  • Cescatti A. 1997a. Modelling the radiative transfer in discontinuous canopies of asymmetric crowns. I. Model structure and algorithms. Ecological Modelling, 101: 263-274.

  • Cescatti A. 1997b. Modelling the radiative transfer in discontinuous canopies of asymmetric crowns. II. Model testing and application in a Norway spruce stand. Ecological Modelling, 101: 275-284.

  • Chazdon R.L., Field C.B. 1987. Photographic estimation of photosynthetically active radiation: evaluation of a computerized technique. Oecologia, 73: 525-532.

  • Chen J.M., Black T.A., Price D.T., Carter R.E. 1993. Model for Calculating Photosynthetic Photon Flux Densities in Forest Openings on Slopes. Journal of Applied Meteorology, 32: 1656-1665.

  • Coates K.D. 1998. Tree species response to gap formation in partially-cut interior cedar-hemlock forests of northwestern British Columbia, The University of British Columbia.

  • Coates K.D., Burton P.J. 1997. A gap-based approach for development of silvicultural systems to address ecosystem management objectives. Forest Ecology and Management, 99: 337-354.

  • De Chantal M., Leinonen K., Kuuluvainen T., Cescatti A. 2003. Early response of Pinus sylvestris and Picea abies seedlings to an experimental canopy gap in a boreal spruce forest. Forest Ecology and Management, 176: 321-336.

  • Dengler A. 1930. Waldbau auf ökologischer Grundlage: Ein Lehr- und Handbuch. Berlin, Springer.

  • Dubayah R., Rich P.M. 1996. GIS-Based Solar Radiation Modeling, in: GIS and Environmental Modeling: Progress and Research Issues (eds. M.F. Goodchild, L.T. Steyaert, B.O. Parks, C. Johnston, D. Maidment, M. Crane, S. Glendinning), John Wiley & Sons, 129-134.

  • Fischer B.C., Merritt C. 1978. SHADOS: a computer model to simulate light energy distribution in small forest openings., in: Proceedings of the Second Central Hardwood Forest Conference. (ed. P.E. Pope), 302-319.

  • Fu P., Rich P.M. 1999. Design and implementation of the Solar Analyst: an ArcView extension for modeling solar radiation at landscape scales, in: Proceedings of the 19th Annual ESRI User Conference, 1-33.

  • Fu P., Rich P.M. 2002. A geometric solar radiation model with applications in agriculture and forestry. Computers and Electronics in Agriculture, 37: 25-35.

  • Fu Q. 2003. Radiation (SOLAR), in: Encyclopedia of Atmospheric Sciences (ed. J.R. Holton).Oxford,Academic Press, 1859-1863.

  • Gendron F., Messier C., Lo E., Comeau P.G. 2006. The angular distribution of diffuse photosynthetically active radiation under different sky conditions in the open and within deciduous and conifer forest stands of Quebec and British Columbia, Canada. Annals of Forest Science, 63: 43-53.

  • Grace J.C., JARVIS P.G., Norman J.M. 1987. Modelling the interception of solar radiant energy in intensively managed stands. New Zealand Journal of Forest Science, 17 (2/3), 193-209.

  • Graniczny S. 1952. Badania nad dolesianiem powierzchni pod drzewostanami lukowatymi i nadmiernie przerzedzonymi. Warszawa, Państwowe Wydawnictwa Rolnicze i Leśne.

  • Graniczny S. 1959. Prosta metoda określania warunków usłonecznienia jednego z podstawowych czynników ekologicznych w hodowli lasu [A simplified method for defining conditions of sunlight, the basic ecological factor in silviculture]. Sylwan, 103: 31-39.

  • Halverson H.G., Smith J.L. 1974. Controlling solar light and heat in a forest by managing shadow sources. Berkeley, California. Pacific Southwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture. 14 p.

  • Halverson H.G., Smith J.L. 1979. Solar radiation as a forest management tool: a primer of principles and application. Berkeley, California. Pacific Southwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture, 13 p.

  • Harrington J.B. 1984. Solar radiation in a clear-cut strip - A computer algorithm. Agricultural and Forest Meteorology, 33: 23-39.

  • Harrod J., White P.S., Harmon M.E. 1998. Changes in xeric forests in western Great Smoky Mountains National Park, 1936-1995. Castanea, 63 (3): 346-360.

  • Huang S., Fu P. 2009. Modeling Small Areas Is a Big Challenge. ESRI, ArcUser Online, 28-31. [3.07.2013].

  • Huang S., Rich P.M., Crabtree R.L., Potter C.S., Fu P. 2008. Modeling monthly near-surface air temperature from solar radiation and lapse rate: Application over complex terrain in Yellowstone National Park. Physical Geography, 29: 158-178.

  • Kumar L., Skidmore A.K., Knowles E.1997. Modelling topographic variation in solar radiation in a GIS environment. International Journal for Geographical Information Science, 11(5): 475-497.

  • Lieffers V.J., Messier C., Stadt K.J., Gendron F., Comeau P.G. 1999. Predicting and managing light in the understory of boreal forests. Canadian Journal of Forest Research, 29: 796-811.

  • Marquis D.A. 1965. Controlling light in small clearcuttings. Northeastern Forest Experiment Station, Forest Service, U.S. Deptartment of Agriculture.

  • Marshall J., Plum R.A. 2008. Atmosphere, Ocean, and Climate Dynamics: An Introductory Text. Academic Press. ISBN 9780125586917.

  • Mierzejewski W., Niedźwiedzki P. 1954. Z badań nad przebiegiem odnowienia w rębni gniazdowej. Sylwan, 98: 51-63.

  • Monteith J.L., Unsworth M.H. 2008. Principles of Environmental Physics. Academic Press. ISBN 9780123869104.

  • Morozov G.F. 1925. Učenie o lese. Leningrad, Goslesbumizdat.

  • Norman J.M., Jarvis P.G. 1975. Photosynthesis in Sitka Spruce (Picea sitchensis (Bong.) Carr.): V. Radiation Penetration Theory and a Test Case. Journal of Applied Ecology, 12: 839-878.

  • Oker-Blom P. 1986. Photosynthetic radiation regime and canopy structure in modeled forest stands. Acta Forestalia Fennica, 197: 1-44.

  • Pierce L.L., Running S.W. 1988. Rapid estimation of coniferous forest leaf area index using a portable integrating radiometer. Ecology, 69 (6): 1762-1767.

  • Pukkala T., Kuuluvainen T., Stenberg P. 1993. Below-Canopy distribution of photosynthetically active radiation and its relation to seedling growth in a boreal Pinus sylvestris stand. Scandinavian Journal of Forest Research, 8: 313-325.

  • Rich P.M. 1989. A manual for analysis of hemispherical canopy photography. New Mexico, Los Alamos National Laboratory.

  • Rich P.M. 1990. Characterizing plant canopies with hemispherical photographs. Remote Sensing Reviews, 5 (1): 13-29.

  • Rich P.M., Dubayah R., Hetrick W.A., Saving S.C. 1994. Using viewshed models to calculate intercepted solar radiation: applications in ecology. American Society for Photogrammetry and Remote Sensing Technical Papers: 524-529.

  • Rich P.M., Hetrick W.A., Saving S.C. 1995. Modeling Topographic Influences on Solar Radiation: A Manual for the SOLARFLUX Model.Los Alamos National Laboratory Report LA-12989-M.

  • Rich P.M., Hughes G.S., Barnes F.J. 1993. Using GIS to reconstruct canopy architecture and model ecological processes in pinyon-juniper woodlands, in: Thirteenth Annual ESRI User Conference, 435-445.

  • Spittlehouse D.L. 2004. Forest, Edge, and Opening Microclimate at Sicamous Creek. University of British Columbia Press.

  • Sprugel D.G., Rascher K.G., Gersonde R., Dovčiak M., Lutz J.A., Halpern C.B. 2009. Spatially explicit modeling of overstory manipulations in young forests: Effects on stand structure and light. Ecological Modelling, 220: 3565-3575.

  • Stanhill G., Cohen S. 2001. Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agricultural and Forest Meteorology, 107: 255-278.

  • Stueve K.M., Isaacs R.E., Tyrrell L.E., Densmore R.V. 2011. Spatial variability of biotic and abiotic tree establishment constraints across a treeline ecotone in the Alaska Range. Ecology, 92: 496-506. ter

  • Steege H. 1997. Winphot 5.0. A programme to analyze vegetation indices, light and light quality from hemispherical photographs.Tropenbos-Guyana Programme/Utrecht University.

  • Tsubo M., Walker S. 2005. Relationships between photosynthetically active radiation and clearness index at Bloemfontein, South Africa. Theoretical and Applied Climatology, 80: 17-25.

  • Wagner C. 1923. Der Blendersaumschlag und sein System. Tübingen,Verlag der H. Laupp Buchhandlung.

  • Włoczewski T. 1968. Ogólna hodowla lasu: podręcznik dla studentów wydziałów leśnych WSR. Państwowe Wydawnictwo Rolnicze i Leśne.


Journal + Issues