Influence of substrate compaction in nursery containers on the growth of Scots pine (Pinus sylvestris L.) seedlings

Mariusz Kormanek 1 , Jacek Banach 2 ,  and Michał Ryba 3
  • 1 University of Agriculture in Kraków, Faculty of Forestry, 1 Department of Forest Work Mechanization
  • 2 Department of Genetics and Forest Tree Breeding, Al. 29 Listopada 46, 31–425 Kraków, Poland
  • 3 University of Agriculture in Kraków, Faculty of Forestry, Department of Forest Work Mechanization


The paper presents research on influence of nursery soil compaction, composed of peat (90%) and perlite (10%), on the growth of seedlings of Pinus sylvestris grown in containers. Polyethylene nursery are containers used for the seedling production. These containers were filled with three different densities of the peat and perlite substrate (0.3, 0.5 and 0.7 g·cm-3). During the experiment, nursery containers were initially placed in a plastic tent for a period of two months, and then for three months further months in an open nursery field. Growth measurements for individual plants were the length of shoots and the root system, root collar diameter, root and shoot dry weight and photosynthetic rate. There was a relationship between the extent of compaction of the soil substrate and all analyzed growth parameters of seedlings. A more compact substrate adversely affected on the number of grown seedlings and their length but positively influenced the dry mass of pine seedlings.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Alameda D., Anten N. P. R., Villar R. 2012. Soil compaction effects on growth and root traits of tobacco depend on light, water regime and mechanical stress. Soil and Tillage Research, 120: 121-129.

  • Arvidsson J. 2001. Subsoil compaction caused by heavy sugarbeet harvesters in southern Sweden. I. Soil physical properties and crop yield in six field experiments. Soil and Tillage Research, 60 (1-2): 67-78.

  • Bartholomew P. W., Williams R. D. 2010. Effects of soil bulk density and strength on seedling growth of annual ryegrass and tall fescue in controlled environment. Grass and Forage Science, 65: 348-357.

  • Boja N., Boja F. 2011. Variation of soil compaction in forest nurseries. Research Journal of Agricultural Science, 43 (3): 23-30.

  • Brais S. 2001. Persistence of soil compaction and effects on seedling growth in northwestern Quebec. Soil Science Society of American Journal, 65 (4): 1263-1271.

  • Buraczyk W., Szeligowski H., Aleksandrowicz-Trzcińska M., Drozdowski S., Jakubowski P., 2012. Wzrost mikoryzowanych i niemikoryzowanych sadzonek sosny zwyczajnej (Pinus sylvestris L.) w warunkach zróżnicowanych wilgotności i żyzności podłoża [Growth of mycorrhized and non-mycorrhized Scots pine (Pinus sylvestris L.) seedlings on substrates varying in moisture content and fertility]. Sylwan, 156 (2): 100-111.

  • Conlin T. S. S., van den Driessche R. 1996. Short term effects of soil compaction on growth of Pinus contorta seedlings. Canadian Journal of Forest Research, 26: 727-739.

  • Ehlers W., Werner D., Mähner T. 2000. Wirkung mechanischer Belastung auf Geflüge und Ertagsleistung einer Löss- Parabraundere mit zwei Bearbeitungssystem. Journal of Plant Nutrition and Soil Science, 163 (3): 321-333.

  • Etana A., Håkansson I, 1994. Swedish experiments on the persistence of subsoil compaction caused by vehicles with high axle load. Soil and Tillage Research, 29 (2-3): 167-172.

  • Ferree, D. C., Streeter J. G., Yuncong Y. 2004. Response of container-grown apple trees to soil compaction. HortScience, 39: 40-48.

  • Gilman E. F., Leone I. A., Flower F. B. 1987. Effect of soil compaction and oxygen content on vertical and horizontal root distribution. Journal of Environmental Horticulture, 5 (1): 33-36.

  • Heilman P. 1981. Root penetration of Douglas-fir seedlings into compacted soil. Forest Science, 27 (4): 660-666.

  • Kormanek M., Banach J. 2011. Influence in soil compaction on the growth of pedunculate oak seedlings bred in laboratory condition, in: Utilization of agricultural and forest machinery. (ed. J. Walczyk), Kraków, PAU, 109-118.

  • Kormanek M., Banach J. 2012. Wpływ nacisku jednostkowego wywieranego na glebę, na jakość odnowienia wybranych gatunków drzew leśnych [Influence of unit pressure exerted on soil on quality of renewal of chosen species of trees]. Acta Agrophysica, 19 (1): 51-63.

  • Kozlowski T. T. 1999. Soil compaction and growth of woody plants. Scandinavian Journal of Forest Research, 14: 596-619.

  • Lipiec J., Horn R., Pietrusiewicz J., Siczek A. 2013. Effects of soil compaction on root elongation and anatomy of different cereal plant species. Soil and Tillage Research, 121: 74-81.

  • Lipiec J., Rejman J. 2010. Gleba pod kołami, in: Badania w toku - Agrofizyka. Academia, 3 (11): 38-39.

  • Maupin C., Struve D. K. 1997. Red oak transplanting to different bulk density soils have similar water use characteristics. Journal of Arboriculture, 23: 233-238.

  • Misra R. K., Gibbons A. K. 1996. Growth and morphology of eucalypt seedling-roots, in relation to soil strength arising from compaction. Plant and Soil, 182: 1-11.

  • Mądry W., Mańkowski D. R., Kaczmarek Z., Krajewski P., Studnicki M. 2010. Metody statystyczne oparte na modelach liniowych w zastosowaniach do doświadczalnictwa, genetyki i hodowali roślin [Statistical methods based on linear models in applications for experimentation, genetics and plant breeding]. Monografie i rozprawy naukowe IHAR, 34: 1-162.

  • Onweremadu E. U., Eshett E. T., Ofoh M. C., Nwufo M. I., Obiefuna J. C. 2008. Seedling performance as affected by bulk density and soil moisture on a typic tropaquept. Journal of Plant Sciences, 3 (1): 43-51.

  • Ozimek G. 1993. Przyrodnicze aspekty stosowania szerokich opon w maszynach leśnych. Przegląd Techniki Rolniczej i Leśnej, 5/93: 20-22.

  • Pan E., Bassuk N. 1985. Effects of soil type and compaction on the growth of Ailanthus altissima seedlings. Journal of Environmental Horticulture, 3 (4): 158-162.

  • Porter B. 1994. Wpływ sposobów zrywki na uszkodzenia gleb i drzew pozostających. Przegląd Techniki Rolniczej i Leśnej, 11: 20-22.

  • Porter B. 1998. Ekologiczne aspekty prac zrywkowych. Przegląd Techniki Rolniczej i Leśnej, 7: 17-19.

  • Szabla K. 2009. Hodowlane i ekonomiczne aspekty produkcji materiału sadzeniowego z zakrytym systemem korzeniowym poddanego zabiegowi sterowanej mikoryzacji [Silvicultural and economic aspects of container-grown seedling production subjected to controlled mycorrhization]. Sylwan, 153 (4): 253-259.

  • Szabla K., Pabian R., 2003. Szkółkarstwo kontenerowe. Warszawa, Centrum Informacyjne Lasów Państwowych, 213 p.

  • Ulrich R., Neruda J., Valenta J. 2003. The impact of selected machines carriageable system on forest soil. Inżynieria Rolnicza, 11 (53): 229-235.

  • Więsik J. 1996. Możliwości doboru maszyn przyjaznych dla środowiska leśnego [Selection possibilities of machines environmentally friendly for forest]. Przegląd Techniki Rolniczej i Leśnej, 1: 13-15.

  • Zahreddine, H. G., D. K Struve, and M. Quigley. 2004. Growing Pinus nigra seedlings in Spinout-treated containers reduces root malformation and increases regrowth potential. Journal of Environmental Horticulture, 22: 176-182.


Journal + Issues