Simulation of Scots pine stand dynamics under climate change conditions in the Polish and Ukrainian parts of Roztocze

Ihor Kozak 1 , Patrycja Czekajska 1 , Hanna Kozak 1 , Adam Stępień 1 ,  and Piotr Kociuba 1
  • 1 The John Paul II Catholic University of Lublin, Department of Landscape Ecology, ul. Konstantynów 1H, 20-708 Lublin, Poland

Abstract

The study was conducted in the Polish (Roztoczanski National Park) and Ukrainian (Rava-Rus’ka Landscape Reserve and Yavorivskyi National Park) parts of the Roztocze region. In each of these locations three research areas were established in Scots pine (Pinus sylvestris L.) stands under similar ecological conditions. The purpose of this study was to carry out a survey of possible scenarios for pine stand dynamics in the Polish and Ukrainian parts of Roztocze using the FORKOME model. A control scenario was compared with four other climate change scenarios (warm dry and warm humid; cold dry and cold humid) for a period of covering the next 100 years. Using the control scenario, the FORKOME model predicted that for the next 100 years pine stands will dominate in terms of biomass and number of trees. The warm-dry and warm-humid climate scenarios resulted in slightly reduced biomass of pine stands. However pine would still maintain its dominance, although with a noticeable increase in beech and fir biomass. Nevertheless, in term of the number of trees during the second half of the simulation, it is beech and fir that dominate stand 1 in Roztoczanski National Park. Under the climate cooling scenario (cold dry and cold humid), the biomass of pine and spruce would increase during the next 100 years. Pine trees that would dominate in terms of their numbers, although the number of spruce individuals also tends to increase. The results presented in the paper indicate that the FORKOME model is very useful when investigating different climate changes scenarios in the Roztocze region.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Botkin D. B., Janak J. G., Wallis J. R. 1972. Some ecological consequences of a computer model of forest growth. Journal of Ecology, 60: 849-872.

  • Brzeziecki B. 1999. Ekologiczny model drzewostanu: zasady konstrukcji, parametryzacji i przykłady zastosowań. Warszawa, Fundacja Rozwoju SGGW, p. 115. ISBN 83-87660-65-5.

  • Brzeziecki B., Zajączkowski J. 2006. FORLAS 2.0. Program komputerowy i podręcznik użytkownika [FORLAS: Ecological model of stand development]. SGGW, Katedra Hodowli Lasu, p. 38.

  • Bugmann H. 1994. On the ecology of mountainous forests in a changing climate: a simulation study. Ph. D. thesis no. 10638, Switzerland, Swiss Federal Institute of Technology Zurich.

  • Cherniavskyi М. W., Sawka H. S. 2004. Funkcionalne zonuwannja Regionalnoho Landszaftnoho Parku ‘Raws’ke Roztochia’, in: Naukowij Wisnik Ukr DLTU, 14, 8: 241-252. Lviv, Ukrainskyj Djerżawnyj Lisotechnicznyj Uniwersytet. ISBN 5-7763-2435-1.

  • Ellenberg H. 1986. Vegetation Mitteleuropas mit den Alpen aus okologischer Sicht. Stuttgart, Ulmer, 989 p.

  • Horoszko M. P., Homiuk P. H. 2011. Znaczennja typologicznoho profilu A. Piasec’koho dla ocinky zmin typiw lisu w umowach Ukraińskoho Roztoczja. Naukowij Wisnik Ukr DLTU, 21, 11: 16-20. Lviv, Ukrainskyj Djerżawnyj Lisotechnicznyj Uniwersytet. ISBN 5-7763-2435-1.

  • Izdebski K., Czarnecka B., Grądziel T., Lorens B., Popiołek Z. 1992. Zbiorowiska roślinne Roztoczańskiego Parku Narodowego na tle warunków siedliskowych. Lublin, Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej.

  • Fabijanowski J., Jaworski A. 1996. Kierunki postępowania hodowlanego w lasach karpackich wobec zmieniających się warunków środowiska [Guidelines of silvicultural treatments in Carpathian forests facing changing environmental conditions]. Sylwan, 8: 75-97.

  • Frazer G.W., Canham C.D., Lertzman K.P. 2000. Gap Light Analyzer (GLA), Version 2.0, Image processing software to analyze true-colour, hemispherical canopy photographs. Bulletin Ecological Society of America, 81: 191-197.

  • Kahn M. 1994. Modellierung der Hohenentwicklung ausgewahlter Baumarten in Abhangigkeit vom Standort. Forstliche Forschungsberichte Munchen, 141: 1-204.

  • Kozak I., Mikusiński G, Stępień A., Kozak H., Frąk R. 2012. Modelling forest dynamics in a nature reserve: a case study from south-central Sweden. Journal of Forest Science, 58, 10: 436-445.

  • Leemans R., Prentice I. C. 1987. Description and simulation of tree layer composition and size distribution in a primeval Picea-Pinus forest. Vegetatio, 69: 147-156.

  • Maciejewski Z. 2009. Stabilność a dynamika naturalnych ekosystemów leśnych w świetle 35-letnich badań obszarów chronionych Roztoczańskiego Parku Narodowego, in: Roztoczańskie Spotkania. Wykłady otwarte z lat 2006-2009. Zwierzyniec, Ośrodek Edukacyjno-Muzealny Roztoczańskiego Parku Narodowego, 6: 92-105.

  • Maciejewski Z. 2011Spontaneous regeneration of a Carpathian beech forest in planted pine stands on the Roztocze Highlands (Roztocze National Park, south-east Poland). Polish Journal of Ecology, 59 (2): 285-297.

  • Maciejewski Z., Szwagrzyk J. 2011. Long-term changes in stand composition of natural forest stands on the Roztocze Highlands. Polish Journal of Ecology, 59 (3): 535-549.

  • Martinez-Vilalta J., Lopez B.C., Adell N., Badiella L., Ninyerola M. 2008. Twentieth century increase of Scots pine radial growth in NE Spain shows strong climate interactions. Global Change Biology, 14: 2868-2881.

  • Pretzsch H., Biber P., Ďurskỳ J. 2002. The single tree based stand simulator SILVA.

  • Construction, application and evaluation. Forest Ecology and Management, 162: 3-21.

  • Shugart H. H. 1984. Theory of forest dynamics. New York, Springer. ISBN 0-387-96000-7.

OPEN ACCESS

Journal + Issues

Search