This paper continues formalization in the Mizar system , ] of basic notions of the composition-nominative approach to program semantics which was started in , , ].
The composition-nominative approach studies mathematical models of computer programs and data on various levels of abstraction and generality and provides tools for reasoning about their properties. In particular, data in computer systems are modeled as nominative data . Besides formalization of semantics of programs, certain elements of the composition-nominative approach were applied to abstract systems in a mathematical systems theory , , , , ].
In the paper we give a formal definition of the notions of a binominative function over given sets of names and values (i.e. a partial function which maps simple-named complex-valued nominative data to such data) and a nominative predicate (a partial predicate on simple-named complex-valued nominative data). The sets of such binominative functions and nominative predicates form the carrier of the generalized Glushkov algorithmic algebra for simple-named complex-valued nominative data . This algebra can be used to formalize algorithms which operate on various data structures (such as multidimensional arrays, lists, etc.) and reason about their properties.
In particular, we formalize the operations of this algebra which require a specification of a data domain and which include the existential quantifier, the assignment composition, the composition of superposition into a predicate, the composition of superposition into a binominative function, the name checking predicate. The details on formalization of nominative data and the operations of the algorithmic algebra over them are described in [, , ].
[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
[2] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.
[3] Ievgen Ivanov. On the underapproximation of reach sets of abstract continuous-time systems. In Erika Ábrahám and Sergiy Bogomolov, editors, Proceedings 3rd International Workshop on Symbolic and Numerical Methods for Reachability Analysis, SNR@ETAPS 2017, Uppsala, Sweden, 22nd April 2017, volume 247 of EPTCS, pages 46–51, 2017. doi:10.4204/EPTCS.247.4.
[4] Ievgen Ivanov. On representations of abstract systems with partial inputs and outputs. In T. V. Gopal, Manindra Agrawal, Angsheng Li, and S. Barry Cooper, editors, Theory and Applications of Models of Computation – 11th Annual Conference, TAMC 2014, Chennai, India, April 11–13, 2014. Proceedings, volume 8402 of Lecture Notes in Computer Science, pages 104–123. Springer, 2014. ISBN 978-3-319-06088-0. doi:10.1007/978-3-319-06089-7_8.
[5] Ievgen Ivanov. On local characterization of global timed bisimulation for abstract continuous-time systems. In Ichiro Hasuo, editor, Coalgebraic Methods in Computer Science – 13th IFIP WG 1.3 International Workshop, CMCS 2016, Colocated with ETAPS 2016, Eindhoven, The Netherlands, April 2–3, 2016, Revised Selected Papers, volume 9608 of Lecture Notes in Computer Science, pages 216–234. Springer, 2016. ISBN 978-3-319-40369-4. doi:10.1007/978-3-319-40370-0_13.
[6] Ievgen Ivanov, Mykola Nikitchenko, and Uri Abraham. On a decidable formal theory for abstract continuous-time dynamical systems. In Vadim Ermolayev, Heinrich C. Mayr, Mykola Nikitchenko, Aleksander Spivakovsky, and Grygoriy Zholtkevych, editors, Information and Communication Technologies in Education, Research, and Industrial Applications: 10th International Conference, ICTERI 2014, Kherson, Ukraine, June 9–12, 2014, Revised Selected Papers, pages 78–99. Springer International Publishing, 2014. ISBN 978-3-319-13206-8. doi:10.1007/978-3-319-13206-8_4.
[7] Ievgen Ivanov, Mykola Nikitchenko, and Uri Abraham. Event-based proof of the mutual exclusion property of Peterson’s algorithm. Formalized Mathematics, 23(4):325–331, 2015. doi:10.1515/forma-2015-0026.
[8] Ievgen Ivanov, Mykola Nikitchenko, Andrii Kryvolap, and Artur Korniłowicz. Simple-named complex-valued nominative data – definition and basic operations. Formalized Mathematics, 25(3):205–216, 2017. doi:10.1515/forma-2017-0020.
[9] Ievgen Ivanov, Artur Korniłowicz, and Mykola Nikitchenko. Implementation of the composition-nominative approach to program formalization in Mizar. The Computer Science Journal of Moldova, 26(1):59–76, 2018.
[10] Ievgen Ivanov, Artur Korniłowicz, and Mykola Nikitchenko. On algebras of algorithms and specifications over uninterpreted data. Formalized Mathematics, 26(2):141–147, 2018. doi:10.2478/forma-2018-0011.
[11] Artur Kornilowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. Formalization of the algebra of nominative data in Mizar. In Maria Ganzha, Leszek A. Maciaszek, and Marcin Paprzycki, editors, Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, FedCSIS 2017, Prague, Czech Republic, September 3–6, 2017., pages 237–244, 2017. ISBN 978-83-946253-7-5. doi:10.15439/2017F301.
[12] Artur Korniłowicz, Ievgen Ivanov, and Mykola Nikitchenko. Kleene algebra of partial predicates. Formalized Mathematics, 26(1):11–20, 2018. doi:10.2478/forma-2018-0002.
[13] Artur Korniłowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. Formalization of the nominative algorithmic algebra in Mizar. In Jerzy Świątek, Leszek Borzemski, and Zofia Wilimowska, editors, Information Systems Architecture and Technology: Proceedings of 38th International Conference on Information Systems Architecture and Technology – ISAT 2017: Part II, pages 176–186. Springer International Publishing, 2018. ISBN 978-3-319-67229-8. doi:10.1007/978-3-319-67229-8_16.
[14] Nikolaj S. Nikitchenko. A composition nominative approach to program semantics. Technical Report IT-TR 1998-020, Department of Information Technology, Technical University of Denmark, 1998.
[15] Volodymyr G. Skobelev, Mykola Nikitchenko, and Ievgen Ivanov. On algebraic properties of nominative data and functions. In Vadim Ermolayev, Heinrich C. Mayr, Mykola Nikitchenko, Aleksander Spivakovsky, and Grygoriy Zholtkevych, editors, Information and Communication Technologies in Education, Research, and Industrial Applications – 10th International Conference, ICTERI 2014, Kherson, Ukraine, June 9–12, 2014, Revised Selected Papers, volume 469 of Communications in Computer and Information Science, pages 117–138. Springer, 2014. ISBN 978-3-319-13205-1. doi:10.1007/978-3-319-13206-8_6.