Klein-Beltrami Model. Part I

Roland Coghetto 1
  • 1 , 7100, La Louvière, Belgium


Tim Makarios (with Isabelle/HOL1) and John Harrison (with HOL-Light2) shown that “the Klein-Beltrami model of the hyperbolic plane satisfy all of Tarski’s axioms except his Euclidean axiom” [], [], [], [].

With the Mizar system [], [] we use some ideas are taken from Tim Makarios’ MSc thesis [] for the formalization of some definitions (like the absolute) and lemmas necessary for the verification of the independence of the parallel postulate. This work can be also treated as further development of Tarski’s geometry in the formal setting []. Note that the model presented here, may also be called “Beltrami-Klein Model”, “Klein disk model”, and the “Cayley-Klein model” [].

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Norbert A’Campo and Athanase Papadopoulos. On Klein’s so-called non-Euclidean geometry. arXiv preprint arXiv:1406.7309, 2014.

  • [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.

  • [3] Eugenio Beltrami. Saggio di interpetrazione della geometria non-euclidea. Giornale di Matematiche, 6:284–322, 1868.

  • [4] Eugenio Beltrami. Essai d’interprétation de la géométrie non-euclidéenne. In Annales scientifiques de l’École Normale Supérieure. Trad. par J. Hoüel, volume 6, pages 251–288. Elsevier, 1869.

  • [5] Karol Borsuk and Wanda Szmielew. Podstawy geometrii. Państwowe Wydawnictwo Naukowe, Warszawa, 1955 (in Polish).

  • [6] Adam Grabowski. Tarski’s geometry modelled in Mizar computerized proof assistant. In Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, FedCSIS 2016, Gdańsk, Poland, September 11–14, 2016, pages 373–381, 2016. doi:10.15439/2016F290.

  • [7] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.

  • [8] Kanchun, Hiroshi Yamazaki, and Yatsuka Nakamura. Cross products and tripple vector products in 3-dimensional Euclidean space. Formalized Mathematics, 11(4):381–383, 2003.

  • [9] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in 𝒠 T n ${\cal E}_T^n$. Formalized Mathematics, 12(3):301–306, 2004.

  • [10] Artur Korniłowicz and Yasunari Shidama. Some properties of circles on the plane. Formalized Mathematics, 13(1):117–124, 2005.

  • [11] Akihiro Kubo. Lines in n -dimensional Euclidean spaces. Formalized Mathematics, 11(4): 371–376, 2003.

  • [12] Xiquan Liang, Piqing Zhao, and Ou Bai. Vector functions and their differentiation formulas in 3-dimensional Euclidean spaces. Formalized Mathematics, 18(1):1–10, 2010. doi:10.2478/v10037-010-0001-2.

  • [13] Timothy James McKenzie Makarios. A mechanical verification of the independence of Tarski’s Euclidean Axiom. Victoria University of Wellington, New Zealand, 2012. Master’s thesis.

  • [14] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4): 535–545, 1991.

  • [15] Xiaopeng Yue, Xiquan Liang, and Zhongpin Sun. Some properties of some special matrices. Formalized Mathematics, 13(4):541–547, 2005.


Journal + Issues