Embedded Lattice and Properties of Gram Matrix

Open access

Summary

In this article, we formalize in Mizar [14] the definition of embedding of lattice and its properties. We formally define an inner product on an embedded module. We also formalize properties of Gram matrix. We formally prove that an inverse of Gram matrix for a rational lattice exists. Lattice of Z-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lov´asz) base reduction algorithm [16] and cryptographic systems with lattice [17].

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics 1(2):377-382 1990.

  • [2] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics 1(3):543-547 1990.

  • [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics 1(1):41-46 1990.

  • [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics 1(1):107-114 1990.

  • [5] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics 1(3):529-536 1990.

  • [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics 1(1): 55-65 1990.

  • [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics 1(1):153-164 1990.

  • [8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics 1(1):47-53 1990.

  • [9] Yuichi Futa and Yasunari Shidama. Lattice of Z-module. Formalized Mathematics 24 (1):49-68 2016. doi: 10.1515/forma-2016-0005.

  • [10] Yuichi Futa and Yasunari Shidama. Divisible Z-modules. Formalized Mathematics 24 (1):37-47 2016. doi: 10.1515/forma-2016-0004.

  • [11] Yuichi Futa Hiroyuki Okazaki and Yasunari Shidama. Z-modules. Formalized Mathe matics 20(1):47-59 2012. doi: 10.2478/v10037-012-0007-z.

  • [12] Yuichi Futa Hiroyuki Okazaki and Yasunari Shidama. Quotient module of Z-module. Formalized Mathematics 20(3):205-214 2012. doi: 10.2478/v10037-012-0024-y.

  • [13] Yuichi Futa Hiroyuki Okazaki and Yasunari Shidama. Matrix of Z-module. Formalized Mathematics 23(1):29-49 2015. doi: 10.2478/forma-2015-0003.

  • [14] Adam Grabowski Artur Korniłowicz and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning 55(3):191-198 2015. doi: 10.1007/s10817-015-9345-1.

  • [15] Eugeniusz Kusak Wojciech Leonczuk and Michał Muzalewski. Abelian groups fields and vector spaces. Formalized Mathematics 1(2):335-342 1990.

  • [16] A. K. Lenstra H. W. Lenstra Jr. and L. Lov´asz. Factoring polynomials with rational coefficients. Mathematische Annalen 261(4):515-534 1982. doi: 10.1007/BF01457454.

  • [17] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: a cryptographic perspective. The International Series in Engineering and Computer Science 2002.

  • [18] Michał Muzalewski. Construction of rings and left- right- and bi-modules over a ring. Formalized Mathematics 2(1):3-11 1991.

  • [19] Karol Pak. Basic properties of the rank of matrices over a field. Formalized Mathematics 15(4):199-211 2007. doi: 10.2478/v10037-007-0024-5.

  • [20] Karol Pak and Andrzej Trybulec. Laplace expansion. Formalized Mathematics 15(3): 143-150 2007. doi: 10.2478/v10037-007-0016-5.

  • [21] Nobuyuki Tamura and Yatsuka Nakamura. Determinant and inverse of matrices of real elements. Formalized Mathematics 15(3):127-136 2007. doi: 10.2478/v10037-007-0014-7.

  • [22] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics 1 (2):329-334 1990.

  • [23] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics 1(3):569-573 1990.

  • [24] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics 1(2):291-296 1990.

  • [25] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics 1(5):865-870 1990.

  • [26] Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics 1 (5):877-882 1990.

  • [27] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics 1(5):883-885 1990.

  • [28] Zinaida Trybulec. Properties of subsets. Formalized Mathematics 1(1):67-71 1990.

  • [29] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics 1 (1):73-83 1990.

Search
Journal information
Impact Factor


CiteScore 2018: 0.42

SCImago Journal Rank (SJR) 2018: 0.111
Source Normalized Impact per Paper (SNIP) 2018: 0.169

Target audience:

researchers in the fields of formal methods and computer-checked mathematics

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 202 95 4
PDF Downloads 96 52 1