Product Pre-Measure

Open access


In this article we formalize in Mizar [5] product pre-measure on product sets of measurable sets. Although there are some approaches to construct product measure [22], [6], [9], [21], [25], we start it from σ-measure because existence of σ-measure on any semialgebras has been proved in [15]. In this approach, we use some theorems for integrals.

[1] Grzegorz Bancerek. Towards the construction of a model of Mizar concepts. Formalized Mathematics, 16(2):207-230, 2008. doi:10.2478/v10037-008-0027-x.

[2] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3): 537-541, 1990.

[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.

[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

[5] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8 17.

[6] Heinz Bauer. Measure and Integration Theory. Walter de Gruyter Inc.

[7] Józef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.

[8] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.

[9] Vladimir Igorevich Bogachev and Maria Aparecida Soares Ruas. Measure theory, volume 1. Springer, 2007.

[10] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.

[11] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

[12] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.

[13] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

[14] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

[15] Noboru Endou. Construction of measure from semialgebra of sets. Formalized Mathematics, 23(4):309-323, 2015. doi:10.1515/forma-2015-0025.

[16] Noboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Mathematics, 14(2):53-70, 2006. doi:10.2478/v10037-006-0008-x.

[17] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. Formalized Mathematics, 9(3):495-500, 2001.

[18] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. The measurability of extended real valued functions. Formalized Mathematics, 9(3):525-529, 2001.

[19] Noboru Endou, Keiko Narita, and Yasunari Shidama. The Lebesgue monotone convergence theorem. Formalized Mathematics, 16(2):167-175, 2008. doi:10.2478/v10037-008-0023-1.

[20] Noboru Endou, Hiroyuki Okazaki, and Yasunari Shidama. Hopf extension theorem of measure. Formalized Mathematics, 17(2):157-162, 2009. doi:10.2478/v10037-009-0018-6.

[21] Gerald B. Folland. Real Analysis: Modern Techniques and Their Applications. Wiley, 2 edition, 1999.

[22] P. R. Halmos. Measure Theory. Springer-Verlag, 1974.

[23] Andrzej Nędzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.

[24] Beata Perkowska. Functional sequence from a domain to a domain. Formalized Mathematics, 3(1):17-21, 1992.

[25] M.M. Rao. Measure Theory and Integration. Marcel Dekker, 2nd edition, 2004.

[26] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329-334, 1990.

[27] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.

[28] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.

[29] Hiroshi Yamazaki, Noboru Endou, Yasunari Shidama, and Hiroyuki Okazaki. Inferior limit, superior limit and convergence of sequences of extended real numbers. Formalized Mathematics, 15(4):231-236, 2007. doi:10.2478/v10037-007-0026-3.

Formalized Mathematics

(a computer assisted approach)

Journal Information

SCImago Journal Rank (SJR) 2017: 0.119
Source Normalized Impact per Paper (SNIP) 2017: 0.237

Target Group

researchers in the fields of formal methods and computer-checked mathematics


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 130 130 3
PDF Downloads 46 46 1