Altitude, Orthocenter of a Triangle and Triangulation

Open access

Summary

We introduce the altitudes of a triangle (the cevians perpendicular to the opposite sides). Using the generalized Ceva’s Theorem, we prove the existence and uniqueness of the orthocenter of a triangle [7]. Finally, we formalize in Mizar [1] some formulas [2] to calculate distance using triangulation.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Grzegorz Bancerek Czesław Byliński Adam Grabowski Artur Korniłowicz Roman Matuszewski Adam Naumowicz Karol Pąk and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber Jacques Carette Cezary Kaliszyk Florian Rabe and Volker Sorge editors Intelligent Computer Mathematics volume 9150 of Lecture Notes in Computer Science pages 261-279. Springer International Publishing 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8 17.

  • [2] R. Campbell. La trigonométrie. Que sais-je? Presses universitaires de France 1956.

  • [3] Wenpai Chang Yatsuka Nakamura and Piotr Rudnicki. Inner products and angles of complex numbers. Formalized Mathematics 11(3):275-280 2003.

  • [4] Roland Coghetto. Some facts about trigonometry and Euclidean geometry. Formalized Mathematics 22(4):313-319 2014. doi:10.2478/forma-2014-0031.

  • [5] Roland Coghetto. Morley’s trisector theorem. Formalized Mathematics 23(2):75-79 2015. doi:10.1515/forma-2015-0007.

  • [6] Roland Coghetto. Circumcenter circumcircle and centroid of a triangle. Formalized Mathematics 24(1):19-29 2016. doi:10.1515/forma-2016-0002.

  • [7] H.S.M. Coxeter and S.L. Greitzer. Geometry Revisited. The Mathematical Association of America (Inc.) 1967.

  • [8] Akihiro Kubo. Lines on planes in n-dimensional Euclidean spaces. Formalized Mathematics 13(3):389-397 2005.

  • [9] Akihiro Kubo. Lines in n-dimensional Euclidean spaces. Formalized Mathematics 11(4): 371-376 2003.

  • [10] Akihiro Kubo and Yatsuka Nakamura. Angle and triangle in Euclidean topological space. Formalized Mathematics 11(3):281-287 2003.

  • [11] Marco Riccardi. Heron’s formula and Ptolemy’s theorem. Formalized Mathematics 16 (2):97-101 2008. doi:10.2478/v10037-008-0014-2.

  • [12] Boris A. Shminke. Routh’s Menelaus’ and generalized Ceva’s theorems. Formalized Mathematics 20(2):157-159 2012. doi:10.2478/v10037-012-0018-9.

  • [13] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics 1(3):445-449 1990.

  • [14] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics 7(2):255-263 1998.

Search
Journal information
Impact Factor


CiteScore 2018: 0.42

SCImago Journal Rank (SJR) 2018: 0.111
Source Normalized Impact per Paper (SNIP) 2018: 0.169

Target audience:

researchers in the fields of formal methods and computer-checked mathematics

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 178 52 5
PDF Downloads 89 41 1