Topology from Neighbourhoods

Open access

Summary

Using Mizar [9], and the formal topological space structure (FMT_Space_Str) [19], we introduce the three U-FMT conditions (U-FMT filter, U-FMT with point and U-FMT local) similar to those VI, VII, VIII and VIV of the proposition 2 in [10]:

If to each element x of a set X there corresponds a set B(x) of subsets of X such that the properties VI, VII, VIII and VIV are satisfied, then there is a unique topological structure on X such that, for each x ∈ X, B(x) is the set of neighborhoods of x in this topology.

We present a correspondence between a topological space and a space defined with the formal topological space structure with the three U-FMT conditions called the topology from neighbourhoods. For the formalization, we were inspired by the works of Bourbaki [11] and Claude Wagschal [31].

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics 1(2):377–382 1990.

  • [2] Grzegorz Bancerek. Complete lattices. Formalized Mathematics 2(5):719–725 1991.

  • [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics 1(1):41–46 1990.

  • [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics 1(1):91–96 1990.

  • [5] Grzegorz Bancerek. Directed sets nets ideals filters and maps. Formalized Mathematics 6(1):93–107 1997.

  • [6] Grzegorz Bancerek. Prime ideals and filters. Formalized Mathematics 6(2):241–247 1997.

  • [7] Grzegorz Bancerek. Bases and refinements of topologies. Formalized Mathematics 7(1): 35–43 1998.

  • [8] Grzegorz Bancerek Noboru Endou and Yuji Sakai. On the characterizations of compactness. Formalized Mathematics 9(4):733–738 2001.

  • [9] Grzegorz Bancerek Czesław Byliński Adam Grabowski Artur Korniłowicz Roman Matuszewski Adam Naumowicz Karol Pąk and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber Jacques Carette Cezary Kaliszyk Florian Rabe and Volker Sorge editors Intelligent Computer Mathematics volume 9150 of Lecture Notes in Computer Science pages 261–279. Springer International Publishing 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8 17.

  • [10] Nicolas Bourbaki. General Topology: Chapters 1–4. Springer Science and Business Media 2013.

  • [11] Nicolas Bourbaki. Topologie générale: Chapitres 1 à 4. Eléments de mathématique. Springer Science & Business Media 2007.

  • [12] Czesław Byliński. Functions and their basic properties. Formalized Mathematics 1(1): 55–65 1990.

  • [13] Czesław Byliński. Functions from a set to a set. Formalized Mathematics 1(1):153–164 1990.

  • [14] Czesław Byliński. Partial functions. Formalized Mathematics 1(2):357–367 1990.

  • [15] Czesław Byliński. Some basic properties of sets. Formalized Mathematics 1(1):47–53 1990.

  • [16] Roland Coghetto. Convergent filter bases. Formalized Mathematics 23(3):189–203 2015. doi:10.1515/forma-2015-0016.

  • [17] Agata Darmochwał. Finite sets. Formalized Mathematics 1(1):165–167 1990.

  • [18] Adam Grabowski and Robert Milewski. Boolean posets posets under inclusion and products of relational structures. Formalized Mathematics 6(1):117–121 1997.

  • [19] Gang Liu Yasushi Fuwa and Masayoshi Eguchi. Formal topological spaces. Formalized Mathematics 9(3):537–543 2001.

  • [20] Yatsuka Nakamura Piotr Rudnicki Andrzej Trybulec and Pauline N. Kawamoto. Preliminaries to circuits I. Formalized Mathematics 5(2):167–172 1996.

  • [21] Beata Padlewska. Locally connected spaces. Formalized Mathematics 2(1):93–96 1991.

  • [22] Beata Padlewska. Families of sets. Formalized Mathematics 1(1):147–152 1990.

  • [23] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics 1(1):223–230 1990.

  • [24] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics 5(2):233–236 1996.

  • [25] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics 11(4): 341–347 2003.

  • [26] Andrzej Trybulec. Moore-Smith convergence. Formalized Mathematics 6(2):213–225 1997.

  • [27] Michał J. Trybulec. Integers. Formalized Mathematics 1(3):501–505 1990.

  • [28] Wojciech A. Trybulec and Grzegorz Bancerek. Kuratowski – Zorn lemma. Formalized Mathematics 1(2):387–393 1990.

  • [29] Zinaida Trybulec. Properties of subsets. Formalized Mathematics 1(1):67–71 1990.

  • [30] Josef Urban. Basic facts about inaccessible and measurable cardinals. Formalized Mathematics 9(2):323–329 2001.

  • [31] Claude Wagschal. Topologie et analyse fonctionnelle. Hermann 1995.

  • [32] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics 1 (1):73–83 1990.

  • [33] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics 1(1):181–186 1990.

  • [34] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics 1(1):215–222 1990.

Search
Journal information
Impact Factor


CiteScore 2018: 0.42

SCImago Journal Rank (SJR) 2018: 0.111
Source Normalized Impact per Paper (SNIP) 2018: 0.169

Target audience:

researchers in the fields of formal methods and computer-checked mathematics

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 246 115 5
PDF Downloads 91 47 2