Weak Convergence and Weak Convergence

Open access

Abstract

In this article, we deal with weak convergence on sequences in real normed spaces, and weak* convergence on sequences in dual spaces of real normed spaces. In the first section, we proved some topological properties of dual spaces of real normed spaces. We used these theorems for proofs of Section 3. In Section 2, we defined weak convergence and weak* convergence, and proved some properties. By RNS_Real Mizar functor, real normed spaces as real number spaces already defined in the article [18], we regarded sequences of real numbers as sequences of RNS_Real. So we proved the last theorem in this section using the theorem (8) from [25]. In Section 3, we defined weak sequential compactness of real normed spaces. We showed some lemmas for the proof and proved the theorem of weak sequential compactness of reflexive real Banach spaces. We referred to [36], [23], [24] and [3] in the formalization.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics 1(1):41-46 1990.

  • [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics 1(1):91-96 1990.

  • [3] Haim Brezis. Functional Analysis Sobolev Spaces and Partial Differential Equations. Springer 2011.

  • [4] Czesław Bylinski. The complex numbers. Formalized Mathematics 1(3):507-513 1990.

  • [5] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics 1(1): 55-65 1990.

  • [6] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics 1(1):153-164 1990.

  • [7] Czesław Bylinski. Partial functions. Formalized Mathematics 1(2):357-367 1990.

  • [8] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics 1(1):47-53 1990.

  • [9] Noboru Endou Yasunari Shidama and Katsumasa Okamura. Baire’s category theorem and some spaces generated from real normed space. Formalized Mathematics 14(4): 213-219 2006. doi:10.2478/v10037-006-0024-x.

  • [10] Krzysztof Hryniewiecki. Recursive definitions. Formalized Mathematics 1(2):321-328 1990.

  • [11] Artur Korniłowicz. Recursive definitions. Part II. Formalized Mathematics 12(2):167-172 2004.

  • [12] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics 1 (3):471-475 1990.

  • [13] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics 1(2):269-272 1990.

  • [14] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics 1(2):273-275 1990.

  • [15] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics 1(3):477-481 1990.

  • [16] Kazuhisa Nakasho Yuichi Futa and Yasunari Shidama. Topological properties of real normed space. Formalized Mathematics 22(3):209-223 2014. doi:10.2478/forma-2014-0024.

  • [17] Keiko Narita Noboru Endou and Yasunari Shidama. Dual spaces and Hahn-Banach theorem. Formalized Mathematics 22(1):69-77 2014. doi:10.2478/forma-2014-0007.

  • [18] Keiko Narita Noboru Endou and Yasunari Shidama. Bidual spaces and reflexivity of real normed spaces. Formalized Mathematics 22(4):303-311 2014. doi:10.2478/forma-2014-0030.

  • [19] Adam Naumowicz. Conjugate sequences bounded complex sequences and convergent complex sequences. Formalized Mathematics 6(2):265-268 1997.

  • [20] Takaya Nishiyama Keiji Ohkubo and Yasunari Shidama. The continuous functions on normed linear spaces. Formalized Mathematics 12(3):269-275 2004.

  • [21] Bogdan Nowak and Andrzej Trybulec. Hahn-Banach theorem. Formalized Mathematics 4(1):29-34 1993.

  • [22] Jan Popiołek. Real normed space. Formalized Mathematics 2(1):111-115 1991.

  • [23] Michael Reed and Barry Simon. Methods of modern mathematical physics. Vol. 1. Academic Press New York 1972.

  • [24] Walter Rudin. Functional Analysis. New York McGraw-Hill 2nd edition 1991.

  • [25] Hideki Sakurai Hisayoshi Kunimune and Yasunari Shidama. Uniform boundedness principle. Formalized Mathematics 16(1):19-21 2008. doi:10.2478/v10037-008-0003-5.

  • [26] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics 12(1):39-48 2004.

  • [27] Yasumasa Suzuki Noboru Endou and Yasunari Shidama. Banach space of absolute summable real sequences. Formalized Mathematics 11(4):377-380 2003.

  • [28] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics 1 (2):329-334 1990.

  • [29] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics 11(4): 341-347 2003.

  • [30] Michał J. Trybulec. Integers. Formalized Mathematics 1(3):501-505 1990.

  • [31] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics 1(2):291-296 1990.

  • [32] Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics 1(5):847-850 1990.

  • [33] Zinaida Trybulec. Properties of subsets. Formalized Mathematics 1(1):67-71 1990.

  • [34] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics 1 (1):73-83 1990.

  • [35] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics 1(1):181-186 1990.

  • [36] Kosaku Yoshida. Functional Analysis. Springer 1980.

  • [37] Bo Zhang Hiroshi Yamazaki and Yatsuka Nakamura. Inferior limit and superior limit of sequences of real numbers. Formalized Mathematics 13(3):375-381 2005.

Search
Journal information
Impact Factor


CiteScore 2018: 0.42

SCImago Journal Rank (SJR) 2018: 0.111
Source Normalized Impact per Paper (SNIP) 2018: 0.169

Target audience:

researchers in the fields of formal methods and computer-checked mathematics

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 174 83 2
PDF Downloads 49 26 0