Isomorphisms of Direct Products of Finite Commutative Groups

Hiroyuki Okazaki 1 , Hiroshi Yamazaki 1 , and Yasunari Shidama 1
  • 1 Shinshu University Nagano, Japan

Summary

We have been working on the formalization of groups. In [1], we encoded some theorems concerning the product of cyclic groups. In this article, we present the generalized formalization of [1]. First, we show that every finite commutative group which order is composite number is isomorphic to a direct product of finite commutative groups which orders are relatively prime. Next, we describe finite direct products of finite commutative groups

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Kenichi Arai, Hiroyuki Okazaki, and Yasunari Shidama. Isomorphisms of direct products of finite cyclic groups. Formalized Mathematics, 20(4):343-347, 2012. doi:10.2478/v10037-012-0038-5.

  • [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.

  • [3] Grzegorz Bancerek. K¨onig’s theorem. Formalized Mathematics, 1(3):589-593, 1990.

  • [4] Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213-225, 1992.

  • [5] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.

  • [6] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

  • [7] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

  • [8] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.

  • [9] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

  • [10] Czesław Bylinski. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.

  • [11] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

  • [12] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

  • [13] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

  • [14] Artur Korniłowicz. The product of the families of the groups. Formalized Mathematics, 7(1):127-134, 1998.

  • [15] Artur Korniłowicz and Piotr Rudnicki. Fundamental Theorem of Arithmetic. FormalizedMathematics, 12(2):179-186, 2004.

  • [16] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.

  • [17] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Formalized Mathematics, 1(5):829-832, 1990.

  • [18] Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1): 103-108, 1993.

  • [19] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1): 115-122, 1990.

  • [20] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329-334, 1990.

  • [21] Andrzej Trybulec. Many sorted sets. Formalized Mathematics, 4(1):15-22, 1993.

  • [22] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

  • [23] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.

  • [24] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5): 855-864, 1990.

  • [25] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathematics, 1(5):955-962, 1990.

  • [26] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. FormalizedMathematics, 2(1):41-47, 1991.

  • [27] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573-578, 1991.

  • [28] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

  • [29] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.

OPEN ACCESS

Journal + Issues

Search