Products in Categories without Uniqueness of cod and dom

Open access

Summary

The paper introduces Cartesian products in categories without uniqueness of cod and dom. It is proven that set-theoretical product is the product in the category Ens [7].

Keywords:
References
  • [1] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589-593, 1990.

  • [2] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

  • [3] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

  • [4] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

  • [5] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

  • [6] Beata Madras. Basic properties of objects and morphisms. Formalized Mathematics, 6(3):329-334, 1997.

  • [7] Zbigniew Semadeni and Antoni Wiweger. Wst¸ep do teorii kategorii i funktorów, volume 45 of Biblioteka Matematyczna. PWN, Warszawa, 1978.

  • [8] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.

  • [9] Andrzej Trybulec. Many sorted sets. Formalized Mathematics, 4(1):15-22, 1993.

  • [10] Andrzej Trybulec. Categories without uniqueness of cod and dom. Formalized Mathematics, 5(2):259-267, 1996.

  • [11] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

  • [12] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Formalized Mathematics

(a computer assisted approach)

Journal Information


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Target Group

researchers in the fields of formal methods and computer-checked mathematics

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 19 19 17
PDF Downloads 5 5 4