Cayley-Dickson Construction

Open access

Summary

Cayley-Dickson construction produces a sequence of normed algebras over real numbers. Its consequent applications result in complex numbers, quaternions, octonions, etc. In this paper we formalize the construction and prove its basic properties.

[1] Grzegorz Bancerek. K¨onig’s theorem. Formalized Mathematics, 1(3):589-593, 1990.

[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

[3] Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.

[4] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

[5] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

[6] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

[7] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

[8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

[9] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.

[10] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.

[11] Eugeniusz Kusak, Wojciech Leonczuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.

[12] Michał Muzalewski and Wojciech Skaba. From loops to abelian multiplicative groups with zero. Formalized Mathematics, 1(5):833-840, 1990.

[13] Henryk Oryszczyszyn and Krzysztof Prazmowski. Real functions spaces. FormalizedMathematics, 1(3):555-561, 1990.

[14] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.

[15] Yasunari Shidama. The Banach algebra of bounded linear operators. Formalized Mathematics, 12(2):103-108, 2004.

[16] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.

[17] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003.

[18] Andrzej Trybulec and Czesław Bylinski. Some properties of real numbers. FormalizedMathematics, 1(3):445-449, 1990.

[19] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.

[20] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.

[21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[22] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825-829, 2001.

[23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Formalized Mathematics

(a computer assisted approach)

Journal Information


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Target Group

researchers in the fields of formal methods and computer-checked mathematics

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 42 42 17
PDF Downloads 8 8 4