Basic Properties of Primitive Root and Order Function

Open access

Summary

In this paper we defined the reduced residue system and proved its fundamental properties. Then we proved the basic properties of the order function. Finally, we defined the primitive root and proved its fundamental properties. Our work is based on [12], [8], and [11].

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics 1(2):377-382 1990.

  • [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics 1(1):41-46 1990.

  • [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics 1(1):91-96 1990.

  • [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics 1(1):107-114 1990.

  • [5] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics 1(1):55-65 1990.

  • [6] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics 1(1):47-53 1990.

  • [7] Agata Darmochwał. Finite sets. Formalized Mathematics 1(1):165-167 1990.

  • [8] Zhang Dexin. Integer Theory. Science Publication China 1965.

  • [9] Yoshinori Fujisawa and Yasushi Fuwa. The Euler’s function. Formalized Mathematics 6(4):549-551 1997.

  • [10] Yoshinori Fujisawa Yasushi Fuwa and Hidetaka Shimizu. Public-key cryptography and Pepin’s test for the primality of Fermat numbers. Formalized Mathematics 7(2):317-321 1998.

  • [11] G.H. Hardy and E.M. Wright. An Introduction to the Theory of Numbers. Posts and Telecom Press China 2007.

  • [12] Hua Loo Keng. Introduction to Number Theory. Beijing Science Publication China 1957.

  • [13] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics 1(5):841-845 1990.

  • [14] Artur Korniłowicz. Collective operations on number-membered sets. Formalized Mathematics 17(2):99-115 2009 doi: 10.2478/v10037-009-0011-0.

  • [15] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics 1(5):887-890 1990.

  • [16] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics 1(5):829-832 1990.

  • [17] Xiquan Liang Li Yan and Junjie Zhao. Linear congruence relation and complete residue systems. Formalized Mathematics 15(4):181-187 2007 doi:10.2478/v10037-007-0022-7.

  • [18] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics 1(3):441-444 1990.

  • [19] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics 11(4):341-347 2003.

  • [20] Michał J. Trybulec. Integers. Formalized Mathematics 1(3):501-505 1990.

  • [21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics 1(1):67-71 1990.

  • [22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics 1(1):73-83 1990.

  • [23] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics 1(1):181-186 1990.

Search
Journal information
Impact Factor


CiteScore 2018: 0.42

SCImago Journal Rank (SJR) 2018: 0.111
Source Normalized Impact per Paper (SNIP) 2018: 0.169

Target audience:

researchers in the fields of formal methods and computer-checked mathematics

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 115 33 3
PDF Downloads 53 32 3