The Properties of Sets of Temporal Logic Subformulas

Open access

Summary

This is a second preliminary article to prove the completeness theorem of an extension of basic propositional temporal logic. We base it on the proof of completeness for basic propositional temporal logic given in [17]. We introduce two modified definitions of a subformula. In the former one we treat until-formula as indivisible. In the latter one, we extend the set of subformulas of until-formulas by a special disjunctive formula. This is needed to construct a temporal model. We also define an ordered positive-negative pair of finite sequences of formulas (PNP). PNPs represent states of a temporal model.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics 1(2):377-382 1990.

  • [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics 1(1):41-46 1990.

  • [3] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics 1(2):421-427 1990.

  • [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics 1(1):91-96 1990.

  • [5] Grzegorz Bancerek. K¨onig’s lemma. Formalized Mathematics 2(3):397-402 1991.

  • [6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics 1(1):107-114 1990.

  • [7] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. FormalizedMathematics 1(3):529-536 1990.

  • [8] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics 1(1):55-65 1990.

  • [9] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics 1(1):153-164 1990.

  • [10] Czesław Bylinski. Partial functions. Formalized Mathematics 1(2):357-367 1990.

  • [11] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics 1(1):47-53 1990.

  • [12] Agata Darmochwał. Finite sets. Formalized Mathematics 1(1):165-167 1990.

  • [13] Mariusz Giero. The axiomatization of propositional linear time temporal logic. FormalizedMathematics 19(2):113-119 2011 doi: 10.2478/v10037-011-0018-1.

  • [14] Mariusz Giero. The derivations of temporal logic formulas. Formalized Mathematics 20(3):215-219 2012 doi: 10.2478/v10037-012-0025-x.

  • [15] Adam Grabowski. Hilbert positive propositional calculus. Formalized Mathematics 8(1):69-72 1999.

  • [16] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics 3(2):275-278 1992.

  • [17] Fred Kr¨oger and Stephan Merz. Temporal Logic and State Systems. Springer-Verlag 2008.

  • [18] Beata Padlewska. Families of sets. Formalized Mathematics 1(1):147-152 1990.

  • [19] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics 1(2):329-334 1990.

  • [20] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics 1(1):115-122 1990.

  • [21] Andrzej Trybulec. Enumerated sets. Formalized Mathematics 1(1):25-34 1990.

  • [22] Andrzej Trybulec. Tuples projections and Cartesian products. Formalized Mathematics 1(1):97-105 1990.

  • [23] Andrzej Trybulec. Defining by structural induction in the positive propositional language. Formalized Mathematics 8(1):133-137 1999.

  • [24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics 1(1):67-71 1990.

  • [25] Edmund Woronowicz. Many argument relations. Formalized Mathematics 1(4):733-737 1990.

  • [26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics 1(1):73-83 1990.

  • [27] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics 1(1):181-186 1990.

Search
Journal information
Impact Factor


CiteScore 2018: 0.42

SCImago Journal Rank (SJR) 2018: 0.111
Source Normalized Impact per Paper (SNIP) 2018: 0.169

Target audience:

researchers in the fields of formal methods and computer-checked mathematics

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 121 31 0
PDF Downloads 44 26 0