Introduction to Rational Functions

Open access

Summary

In this article we formalize rational functions as pairs of polynomials and define some basic notions including the degree and evaluation of rational functions [8]. The main goal of the article is to provide properties of rational functions necessary to prove a theorem on the stability of networks

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.

[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

[4] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

[5] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

[6] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

[7] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

[8] H. Heuser. Lehrbuch der Analysis. B.G. Teubner Stuttgart, 1990.

[9] Eugeniusz Kusak, Wojciech Leonczuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.

[10] Robert Milewski. The evaluation of polynomials. Formalized Mathematics, 9(2):391-395, 2001.

[11] Robert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461-470, 2001.

[12] Robert Milewski. The ring of polynomials. Formalized Mathematics, 9(2):339-346, 2001.

[13] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.

[14] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):97-104, 1991.

[15] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.

[16] Christoph Schwarzweller and Agnieszka Rowinska-Schwarzweller. Schur’s theorem on the stability of networks. Formalized Mathematics, 14(4):135-142, 2006, doi:10.2478/v10037-006-0017-9.

[17] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

[18] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.

[19] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.

[20] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. FormalizedMathematics, 2(1):41-47, 1991.

[21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

[23] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992.

Formalized Mathematics

(a computer assisted approach)

Journal Information

SCImago Journal Rank (SJR) 2017: 0.119
Source Normalized Impact per Paper (SNIP) 2017: 0.237



Target Group

researchers in the fields of formal methods and computer-checked mathematics

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 57 57 21
PDF Downloads 14 14 3