Routh’s, Menelaus’ and Generalized Ceva’s Theorems

Boris A. Shminke 1
  • 1 Shakhtyorskaya 2, 453850 Meleuz, Russia

Summary

The goal of this article is to formalize Ceva’s theorem that is in the [8] on the web. Alongside with it formalizations of Routh’s, Menelaus’ and generalized form of Ceva’s theorem itself are provided.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.

  • [2] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.

  • [3] Akihiro Kubo. Lines in n-dimensional Euclidean spaces. Formalized Mathematics, 11(4):371-376, 2003.

  • [4] Akihiro Kubo and Yatsuka Nakamura. Angle and triangle in Euclidian topological space. Formalized Mathematics, 11(3):281-287, 2003.

  • [5] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.

  • [6] Marco Riccardi. Heron’s formula and Ptolemy’s theorem. Formalized Mathematics, 16(2):97-101, 2008, doi:10.2478/v10037-008-0014-2.

  • [7] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.

  • [8] Freek Wiedijk. Formalizing 100 theorems. http://www.cs.ru.nl/~freek/100/.

  • [9] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.

OPEN ACCESS

Journal + Issues

Search