Morphology for Image Processing. Part I

Hiroshi Yamazaki 1 , Czesław Byliński 2 , and Katsumi Wasaki 1
  • 1 Shinshu University, Nagano, Japan
  • 2 University of Białystok, Poland

Morphology for Image Processing. Part I

In this article we defined mathematical morphology image processing with set operations. First, we defined Minkowski set operations and proved their properties. Next, we defined basic image processing, dilation and erosion proving basic fact about them [5], [8].

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

  • Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

  • Yuzhong Ding and Xiquan Liang. Preliminaries to mathematical morphology and its properties. Formalized Mathematics, 13(2):221-225, 2005.

  • Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Dimension of real unitary space. Formalized Mathematics, 11(1):23-28, 2003.

  • H. J. A. M. Heijimans. Morphological Image Operators. Academic Press, 1994.

  • Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.

  • Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.

  • P. Soille. Morphological Image Analysis: Principles and Applications. Springer, 2003.

  • Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.

  • Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.


Journal + Issues