Planes and Spheres as Topological Manifolds. Stereographic Projection

Open access

Planes and Spheres as Topological Manifolds. Stereographic Projection

The goal of this article is to show some examples of topological manifolds: planes and spheres in Euclidean space. In doing it, the article introduces the stereographic projection [25].

Keywords:
References
  • Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.

  • Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.

  • Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.

  • Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

  • Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213-225, 1992.

  • Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

  • Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.

  • Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.

  • Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

  • Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

  • Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

  • Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

  • Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.

  • Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.

  • Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

  • Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.

  • Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.

  • Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.

  • Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.

  • Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.

  • Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in εn/T Formalized Mathematics, 12(3):301-306, 2004.

  • Artur Korniłowicz and Yasunari Shidama. Some properties of circles on the plane. Formalized Mathematics, 13(1):117-124, 2005.

  • Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.

  • Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.

  • John M. Lee. Introduction to Topological Manifolds. Springer-Verlag, New York Berlin Heidelberg, 2000.

  • Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285-294, 1998.

  • Yatsuka Nakamura, Artur Korniłowicz, Nagato Oya, and Yasunari Shidama. The real vector spaces of finite sequences are finite dimensional. Formalized Mathematics, 17(1):1-9, 2009, doi:10.2478/v10037-009-0001-2.

  • Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. Formalized Mathematics, 1(3):555-561, 1990.

  • Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.

  • Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991.

  • Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.

  • Karol Pąk. Basic properties of metrizable topological spaces. Formalized Mathematics, 17(3):201-205, 2009, doi: 10.2478/v10037-009-0024-8.

  • Marco Riccardi. The definition of topological manifolds. Formalized Mathematics, 19(1):41-44, 2011, doi: 10.2478/v10037-011-0007-4.

  • Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.

  • Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003.

  • Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847-850, 1990.

  • Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.

  • Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized Mathematics, 1(2):297-301, 1990.

  • Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.

  • Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

  • Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

  • Mariusz Żynel and Adam Guzowski. T0 topological spaces. Formalized Mathematics, 5(1):75-77, 1996.

Formalized Mathematics

(a computer assisted approach)

Journal Information


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Target Group

researchers in the fields of formal methods and computer-checked mathematics

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 26 26 16
PDF Downloads 4 4 1