Cayley's Theorem

Open access

Cayley's Theorem

The article formalizes the Cayley's theorem saying that every group G is isomorphic to a subgroup of the symmetric group on G.

Keywords:
References
  • Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.

  • Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213-225, 1992.

  • Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

  • Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

  • Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

  • Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

  • Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.

  • Artur Korniłowicz. The definition and basic properties of topological groups. Formalized Mathematics, 7(2):217-225, 1998.

  • Andrzej Trybulec. Classes of independent partitions. Formalized Mathematics, 9(3):623-625, 2001.

  • Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.

  • Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573-578, 1991.

Formalized Mathematics

(a computer assisted approach)

Journal Information


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Target Group

researchers in the fields of formal methods and computer-checked mathematics

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 15 15 13
PDF Downloads 3 3 2