The Definition of Topological Manifolds

Open access

The Definition of Topological Manifolds

This article introduces the definition of n-locally Euclidean topological spaces and topological manifolds [13].

Keywords:
References
  • [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.

  • [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

  • [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

  • [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

  • [5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

  • [6] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.

  • [7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.

  • [8] Adam Grabowski. Properties of the product of compact topological spaces. Formalized Mathematics, 8(1):55-59, 1999.

  • [9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.

  • [10] Zbigniew Karno. Separated and weakly separated subspaces of topological spaces. Formalized Mathematics, 2(5):665-674, 1991.

  • [11] Zbigniew Karno. The lattice of domains of an extremally disconnected space. Formalized Mathematics, 3(2):143-149, 1992.

  • [12] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in εn/T. Formalized Mathematics, 12(3):301-306, 2004.

  • [13] John M. Lee. Introduction to Topological Manifolds. Springer-Verlag, New York Berlin Heidelberg, 2000.

  • [14] Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285-294, 1998.

  • [15] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991.

  • [16] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.

  • [17] Karol Pąk. Basic properties of metrizable topological spaces. Formalized Mathematics, 17(3):201-205, 2009, doi: 10.2478/v10037-009-0024-8.

  • [18] Bartłomiej Skorulski. First-countable, sequential, and Frechet spaces. Formalized Mathematics, 7(1):81-86, 1998.

  • [19] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.

  • [20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

Formalized Mathematics

(a computer assisted approach)

Journal Information


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Target Group

researchers in the fields of formal methods and computer-checked mathematics

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 30 30 24
PDF Downloads 5 5 3