On Lp Space Formed by Real-Valued Partial Functions

Open access

On Lp Space Formed by Real-Valued Partial Functions

This article is the continuation of [31]. We define the set of Lp integrable functions - the set of all partial functions whose absolute value raised to the p-th power is integrable. We show that Lp integrable functions form the Lp space. We also prove Minkowski's inequality, Hölder's inequality and that Lp space is Banach space ([15], [27]).

Keywords:
References
  • [1] Jonathan Backer, Piotr Rudnicki, and Christoph Schwarzweller. Ring ideals. Formalized Mathematics, 9(3):565-582, 2001.

  • [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.

  • [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

  • [4] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.

  • [5] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.

  • [6] Józef Białas. The s-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.

  • [7] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.

  • [8] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.

  • [9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

  • [10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

  • [11] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

  • [12] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

  • [13] Noboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Mathematics, 14(2):53-70, 2006, doi:10.2478/v10037-006-0008-x.

  • [14] Noboru Endou, Yasunari Shidama, and Keiko Narita. Egoroff's theorem. Formalized Mathematics, 16(1):57-63, 2008, doi:10.2478/v10037-008-0009-z.

  • [15] P. R. Halmos. Measure Theory. Springer-Verlag, 1987.

  • [16] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.

  • [17] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.

  • [18] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.

  • [19] Keiko Narita, Noboru Endou, and Yasunari Shidama. Integral of complex-valued measurable function. Formalized Mathematics, 16(4):319-324, 2008, doi:10.2478/v10037-008-0039-6.

  • [20] Keiko Narita, Noboru Endou, and Yasunari Shidama. Lebesgue's convergence theorem of complex-valued function. Formalized Mathematics, 17(2):137-145, 2009, doi: 10.2478/v10037-009-0015-9.

  • [21] Andrzej Nędzusiak. s-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.

  • [22] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.

  • [23] Beata Perkowska. Functional sequence from a domain to a domain. Formalized Mathematics, 3(1):17-21, 1992.

  • [24] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.

  • [25] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.

  • [26] Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449-452, 1991.

  • [27] Walter Rudin. Real and Complex Analysis. Mc Graw-Hill, Inc., 1974.

  • [28] Yasunari Shidama and Noboru Endou. Integral of real-valued measurable function. Formalized Mathematics, 14(4):143-152, 2006, doi:10.2478/v10037-006-0018-8.

  • [29] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.

  • [30] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

  • [31] Yasushige Watase, Noboru Endou, and Yasunari Shidama. On L1 space formed by real-valued partial functions. Formalized Mathematics, 16(4):361-369, 2008, doi:10.2478/v10037-008-0044-9.

  • [32] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Formalized Mathematics

(a computer assisted approach)

Journal Information


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Target Group

researchers in the fields of formal methods and computer-checked mathematics

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 14 14 13
PDF Downloads 3 3 2