Representation of the Fibonacci and Lucas Numbers in Terms of Floor and Ceiling

Open access

Representation of the Fibonacci and Lucas Numbers in Terms of Floor and Ceiling

In the paper we show how to express the Fibonacci numbers and Lucas numbers using the floor and ceiling operations.

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

[2] Grzegorz Bancerek and Piotr Rudnicki. Two programs for SCM. Part I - preliminaries. Formalized Mathematics, 4(1):69-72, 1993.

[3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.

[4] Yoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu. Public-key cryptography and Pepin's test for the primality of Fermat numbers. Formalized Mathematics, 7(2):317-321, 1998.

[5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.

[6] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.

[7] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.

[8] Robert M. Solovay. Fibonacci numbers. Formalized Mathematics, 10(2):81-83, 2002.

[9] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.

[10] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

[11] Piotr Wojtecki and Adam Grabowski. Lucas numbers and generalized Fibonacci numbers. Formalized Mathematics, 12(3):329-333, 2004.

Formalized Mathematics

(a computer assisted approach)

Journal Information


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Target Group

researchers in the fields of formal methods and computer-checked mathematics

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 37 37 11
PDF Downloads 9 9 2