Equivalence of Deterministic and Nondeterministic Epsilon Automata

Open access

Equivalence of Deterministic and Nondeterministic Epsilon Automata

Based on concepts introduced in [14], semiautomata and leftlanguages, automata and right-languages, and langauges accepted by automata are defined. The powerset construction is defined for transition systems, semiautomata and automata. Finally, the equivalence of deterministic and nondeterministic epsilon automata is shown.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics 1(2):377-382 1990.

  • [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics 1(1):41-46 1990.

  • [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics 1(1):91-96 1990.

  • [4] Grzegorz Bancerek. Reduction relations. Formalized Mathematics 5(4):469-478 1996.

  • [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics 1(1):107-114 1990.

  • [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics 1(1):55-65 1990.

  • [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics 1(1):153-164 1990.

  • [8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics 1(1):47-53 1990.

  • [9] Agata Darmochwał. Finite sets. Formalized Mathematics 1(1):165-167 1990.

  • [10] Karol Pąk. The Catalan numbers. Part II. Formalized Mathematics 14(4):153-159 2006 doi:10.2478/v10037-006-0019-7.

  • [11] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics 1(1):115-122 1990.

  • [12] Andrzej Trybulec. Tuples projections and Cartesian products. Formalized Mathematics 1(1):97-105 1990.

  • [13] Michał Trybulec. Formal languages - concatenation and closure. Formalized Mathematics 15(1):11-15 2007 doi:10.2478/v10037-007-0002-y.

  • [14] Michał Trybulec. Labelled state transition systems. Formalized Mathematics 17(2):163-171 2009 doi: 10.2478/v10037-009-0019-5.

  • [15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics 1(1):67-71 1990.

  • [16] Tetsuya Tsunetou Grzegorz Bancerek and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics 9(4):825-829 2001.

  • [17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics 1(1):73-83 1990.

  • [18] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics 1(1):181-186 1990.

Search
Journal information
Impact Factor


CiteScore 2018: 0.42

SCImago Journal Rank (SJR) 2018: 0.111
Source Normalized Impact per Paper (SNIP) 2018: 0.169

Target audience:

researchers in the fields of formal methods and computer-checked mathematics

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 153 75 2
PDF Downloads 47 33 1