Labelled State Transition Systems

Open access

Labelled State Transition Systems

This article introduces labelled state transition systems, where transitions may be labelled by words from a given alphabet. Reduction relations from [4] are used to define transitions between states, acceptance of words, and reachable states. Deterministic transition systems are also defined.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics 1(2):377-382 1990.

  • [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics 1(1):41-46 1990.

  • [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics 1(1):91-96 1990.

  • [4] Grzegorz Bancerek. Reduction relations. Formalized Mathematics 5(4):469-478 1996.

  • [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics 1(1):107-114 1990.

  • [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics 1(1):55-65 1990.

  • [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics 1(1):153-164 1990.

  • [8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics 1(1):47-53 1990.

  • [9] Agata Darmochwał. Finite sets. Formalized Mathematics 1(1):165-167 1990.

  • [10] Karol Pąk. The Catalan numbers. Part II. Formalized Mathematics 14(4):153-159 2006 doi:10.2478/v10037-006-0019-7.

  • [11] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics 1(1):115-122 1990.

  • [12] Andrzej Trybulec. Tuples projections and Cartesian products. Formalized Mathematics 1(1):97-105 1990.

  • [13] Michał Trybulec. Formal languages - concatenation and closure. Formalized Mathematics 15(1):11-15 2007 doi:10.2478/v10037-007-0002-y.

  • [14] Zinaida Trybulec. Properties of subsets. Formalized Mathematics 1(1):67-71 1990.

  • [15] Tetsuya Tsunetou Grzegorz Bancerek and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics 9(4):825-829 2001.

  • [16] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics 1(1):73-83 1990.

  • [17] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics 1(1):181-186 1990.

Search
Journal information
Impact Factor


CiteScore 2018: 0.42

SCImago Journal Rank (SJR) 2018: 0.111
Source Normalized Impact per Paper (SNIP) 2018: 0.169

Target audience:

researchers in the fields of formal methods and computer-checked mathematics

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 177 85 2
PDF Downloads 57 38 0