Model Checking. Part II

Open access

Model Checking. Part II

This article provides the definition of linear temporal logic (LTL) and its properties relevant to model checking based on [9]. Mizar formalization of LTL language and satisfiability is based on [2, 3].

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics 1(1):41-46 1990.

  • [2] Grzegorz Bancerek. A model of ZF set theory language. Formalized Mathematics 1(1):131-145 1990.

  • [3] Grzegorz Bancerek. Models and satisfiability. Formalized Mathematics 1(1):191-199 1990.

  • [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics 1(1):107-114 1990.

  • [5] Czesław Byliński. Binary operations. Formalized Mathematics 1(1):175-180 1990.

  • [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics 1(1):55-65 1990.

  • [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics 1(1):153-164 1990.

  • [8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics 1(1):47-53 1990.

  • [9] E. M. Clarke O. Grumberg and D. Peled. Model Checking. MIT Press 2000.

  • [10] Kazuhisa Ishida. Model checking. Part I. Formalized Mathematics 14(4):171-186 2006.

  • [11] Zinaida Trybulec. Properties of subsets. Formalized Mathematics 1(1):67-71 1990.

  • [12] Edmund Woronowicz. Many-argument relations. Formalized Mathematics 1(4):733-737 1990.

Search
Journal information
Impact Factor


CiteScore 2018: 0.42

SCImago Journal Rank (SJR) 2018: 0.111
Source Normalized Impact per Paper (SNIP) 2018: 0.169

Target audience:

researchers in the fields of formal methods and computer-checked mathematics

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 136 53 0
PDF Downloads 42 28 0